English
新闻公告
More
化学进展 2010, Vol. 22 Issue (12): 2377-2387 前一篇   后一篇

• 综述与评论 •

点击化学在生物医用高分子中的应用

杨奇志, 刘佳, 蒋序林   

  1. 武汉大学化学与分子科学学院生物医用高分子材料教育部重点实验室 武汉 430072
  • 出版日期:2010-12-24 发布日期:2010-11-04
  • 作者简介:e-mail:xljiang@whu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 20774068)、高等学校博士学科点新教师基金项目(No. 20070486035)、国家重点基础研究发展计划(973)项目(No. 2005CB623903, 2009CB930300)和国家基础科学人才培养基金项目(J0730426)资助

Application of Click Chemistry in Biomedical Polymers

Yang Qizhi, Liu Jia, Jiang Xulin   

  1. College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
  • Online:2010-12-24 Published:2010-11-04

点击化学的概念提出不到10年,由于其反应条件温和,反应效率高,产物后处理简单等诸多优点而备受关注。本文概述了点击化学技术应用于生物医用高分子材料的合成,主要介绍了铜催化叠氮炔环加成(copper-catalyzed azide-alkyne cycloaddition)点击化学合成和制备多功能性和智能响应性高分子用于非病毒高分子基因载体、高分子胶束药物载体和水凝胶控制释放体系等的研究和最新进展,提出了点击化学在生物医用高分子材料合成中应用的主要问题,并对其发展前景进行了展望。

Click chemistry has attracted great attentions since its concept was introduced in less than a decade, because the click chemistry reaction can be carried out under mild and simple reaction conditions, resulting in high reaction efficiency with easy post-treatment for the obtained products. In this review, the synthesis of biomedical polymers using click reaction technique is briefly introduced. The progress on preparation via copper-catalyzed azide-alkyne cycloaddition click reaction and application of the multifunctional and intelligent polymers for non-viral polymeric gene carriers, polymeric-micelles for drug delivery and polymer-based hydrogel is summarized. The limitations and prospective applications of the click chemistry technique for synthesis of biomedical polymers are also discussed.

Contents
1 Introduction
2 Application of click chemistry in synthesis of biomedical polymers
2.1 Non-viral polymeric gene vector
2.2 Polymeric micelles for drug delivey
2.3 Polymeric hydrogel for drug controlled release
2.4 Other biomedical materials
3 Outlook

中图分类号: 

()


[1] Kolb H C, Finn M G, Sharpless K B. Angew. Chem. Int. Ed., 2001, 40: 2004—2021

[2] Lutz J O. Angew. Chem. Int. Ed., 2007, 46: 1018—1025

[3] Kolb H C, Sharpless K B. Drug Discov. Today, 2003, 8(24): 1128—1137

[4] Finn M G, Kolb H C, Fokin V V, Sharpless K B. 化学进展 (Progress in Chemistry), 2008, 20(1): 1—4

[5] Van Dijk M, Rijkers D T S, Liskamp R M J, van Nostrum C F, Hennink W E. Bioconjugate Chem., 2009, 20(11): 2001—2016

[6] Hoyle C E, Bowman C N. Angew. Chem. Int. Ed., 2010, 49(9): 1540—1573

[7] Boyer C, Davis T P. Chem. Commun., 2009, 40: 6029—6031

[8] Wei H L, Yang Z, Chu H J, Zhu J, Li Z C, Cui J S. Polymer, 2010, 51(8): 1694—1702

[9] Srinivasachari S, Liu Y, Zhang G, Prevette L, Reineke T M. J. Am. Chem. Soc., 2006, 128: 8176—8184

[10] Parrish B, Breitenkamp R B, Emrick T. J. Am. Chem. Soc., 2005, 127: 7404—7410

[11] Sumerlin B S, Vogt A P. Macromolecules, 2009, 43(1): 1—13

[12] 李娟 (Li J), 段明 (Duan M), 张烈辉 (Zhang L H), 蒋晓慧 (Jiang X H). 化学进展 (Progress in Chemistry), 2007, 19(11): 1754—1760

[13] Iha R K, Wooley K L, Nystrom A M, Burke D J, Kade M J, Hawker C J. Chem Rev 2009, 109: 5620—5686

[14] 张涛 (Zhang T), 郑朝晖 (Zheng Z H), 成煦 (Cheng X), 丁小斌 (Ding X B), 彭宇行 (Peng Y H). 化学进展 (Progress in Chemistry), 2008, 20(7/8): 1090—1101

[15] Williams D F. Biomaterials, 2009, 30: 5897—5909

[16] Baldwin A D, Kiick K L. Biopolymers, 2010, 94(1): 128—140

[17] Shoichet M S. Macromolecules, 2010, 43(2): 581—591

[18] Sun X L, Zhang N. Mini-Rev. Med. Chem., 2010, 10(2): 108—125

[19] 赵正达 (Zhao Z D), 袁伟忠 (Yuan Z W), 顾书英 (Gu S Y), 任天斌 (Ren T B), 任杰 (Ren J). 化学进展 (Progress in Chemistry), 2010, 22(2/3): 417—426

[20] Wiethoff C M, Middaugh C R. J. Pharm. Sci., 2003, 92: 203—217

[21] Lam A P, Dean D A. Gene Therapy, 2010, 17: 439—447

[22] Haag R, Kratz F. Angew. Chem. Int. Ed., 2006, 45: 1198—1215

[23] Parhamifar L, Larsen A K, Hunter A C, Andresen T L, Moghimi S M, Moghimi M. Soft Matter, 2010, 6(17): 4001—4009

[24] Deng R, Yue Y, Jin F, Chen Y, Kung H, Lin M C M, Wu C. J. Control Release, 2009, 140: 40—46

[25] Jiang X, Lok M C, Hennink W E. Bioconjugate Chem., 2007, 18: 2077—2084

[26] Gao Y, Zhang Z W, Chen L L, Gu W W, Li Y P. Biomacromolecules, 2009, 10(8): 2175—2182

[27] Srinivasachari S, Liu Y, Prevette L E, Reineke T M. Biomaterials, 2007, 28: 2885—2898

[28] Srinivasachari S, Reineke T M. Biomaterials, 2009, 30(5): 928—938

[29] Mendez-Ardoy A, Gomez-Garcia M, Mellet C O, Sevillano N, Giron M D, Salto R, Santoyo-Gonzalez F, Fernandez J. Org. Biomol. Chem., 2009, 7(13): 2681—2684

[30] 蒋序林 (Jiang X L), 刘佳 (Liu J), Hennink W, 卓仁禧 (Zhuo R X). 2009年全国高分子学术论文报告会论文摘要集 (Abstract Set of 2009 National Polymer Conference), 天津 (Tianjin). 2009. 611

[31] 蒋序林 (Jiang X L), 刘佳 (Liu J), 徐丽 (Xu L), 卓仁禧 (Zhuo R X). CN101812178A, 2010

[32] Liu J, Jiang X L, Xu L,Wang X M, Hennink W E, Zhuo R X. Bioconjugate Chem, 2010, DOI: 10.1021/bc/0019/r

[33] Kiick K L. Science, 2007, 317: 1182—1183

[34] O'Reilly R K, Joralemon M J, Wooley K L, Hawker C J. Chem. Mater., 2005, 17(24): 5976—5988

[35] Lutz J F, Zarafshani Z. Adv. Drug Deliv. Rev., 2008, 60(9): 958—970

[36] Jiang X Z, Zhang J Y, Zhou Y M, Xu J, Liu S Y. J. Polym. Sci. Polym. Chem., 2008, 46(3): 860—871

[37] Jiang X, Zhang G, Narain R, Liu S. Soft Matter, 2009, 5(7): 1530—1538

[38] Yuan Y Y, Wang Y C, Du J Z, Wang J. Macromolecules, 2008, 41(22): 8620—8625

[39] Yuan Y Y, Du Q, Wang Y C, Wang J. Macromolecules, 2010, 43(4): 1739—1746

[40] Gou P F, Zhu W P, Xu N, Shen Z Q. J. Polym. Sci. Polym. Chem., 2009, 47(24): 6962—6976

[41] Zhang Y F, Li C H, Liu S Y. J. Polym. Sci. Polym. Chem., 2009, 47(12): 3066—3077

[42] Jiang X, Vogel E B, Smith M R, Baker G L. Macromolecules, 2008, 41(6): 1937—1944

[43] Chen G J, Amajjahe S, Stenzel M H. Chem. Commun., 2009,(10): 1198—1200

[44] De P, Gondi S R, Sumerlin B S. Biomacromolecules, 2008, 9(3): 1064—1070

[45] Wang X, Liu L, Luo Y, Zhao H. Langmuir, 2009, 25(2): 744—750

[46] Quan C Y, Chen J X, Wang H Y, Li C, Chang C, Zhang X Z, Zhuo R X. ACS Nano, 2010, 4(7): 4211—4219

[47] 郭圣荣 (Guo S R). 药用高分子材料 (Polymeric Medical Materials). 北京: 人民卫生出版社 (Beijing: Peoples Medical Publishing House), 2009. 265—289

[48] Bajpai A K, Shukla S K, Bhanu S, Kankane S. Prog. Polym. Sci., 2008, 33: 1088—1118

[49] Ossipov D A, Hilborn J. Macromolecules, 2006, 39(5): 1709—1718

[50] Malkoch M, Vestberg R, Gupta N, Mespouille L, Dubois P, Mason A F, Hedrick J L, Liao Q, Frank C W, Kingsbury K, Hawker C J. Chem. Commun., 2006,(26): 2774—2776

[51] De Geest B G, Van Camp W, Du Prez F E, De Smedt S C, Demeester J, Hennink W E. Chem Commun., 2008,(2): 190—192

[52] Xu X D, Chen C S, Wang Z C, Wang G R, Cheng S X, Zhang X Z, Zhuo R X. J. Polym. Sci. Polym. Chem., 2008, 46(15): 5263—5277

[53] Zhang J, Xu X D, Wu D Q, Zhang X Z, Zhuo R X. Carbohyd. Polym., 2009, 77(3): 583—589

[54] Xu X D, Chen C S, Lu B, Wang Z C, Cheng S X, Zhang X Z, Zhuo R X. Macromol. Rapid Commun., 2009, 30(3): 157—164

[55] Altin H, Kosif I, Sanyal R. Macromolecules, 2010, 43(8): 3801—3808

[56] Crescenzi V, Cornelio L, Di Meo C, Nardecchia S, Lamanna R. Biomacromolecules, 2007, 8(6): 1844—1850

[57] Mortisen D, Peroglio M, Alini M, Eglin D. Biomacromolecules, 2010, 11(5): 1261—1272

[58] Dirks A T J, Cornelissen J J L M, Nolte R J M. Bioconjugate Chem., 2009, 20(6): 1129—1138

[59] Li M, De P, Gondi S R, Sumerlin B S. Macromol. Rapid Commun., 2008, 29(12/13): 1172—1176

[60] Moon S J, Govindan S V, Cardillo T M, DSouza C A, Hansen H J, Goldenberg D M. J. Med. Chem., 2008, 51(21): 6916—6926

[61] Lee S M, Chen H M, O' Halloran T V, Nguyen S T. J. Am. Chem. Soc., 2009, 131(26): 9311—9320

[62] Tosh D K, Yoo L S, Chinn M, Hong K, Kilbey S M, Barrett M O, Fricks I P, Harden T K, Gao Z G, Jacobson K A. Bioconjugate Chem., 2010, 21(2): 372—384

[63] Jewett J C, Bertozzi C R. Chem. Soc. Rev., 2010, 39: 1272—1279

[64] Jewett J C, Sletten E M, Bertozzi C R. J. Am. Chem. Soc., 2010, 132(11): 3688—3690

[65] Clark M, Kiser P. Polym. Int., 2009, 58(10): 1190—1195

[66] Campos L M, Killops K L, Sakai R, Paulusse J M J, Damiron D, Drockenmuller E, Messmore B W, Hawker C J. Macromolecules, 2008, 41: 7063—7070

[67] Aimetti A A, Machen A J, Anseth K S. Biomaterials, 2009, 30: 6048—6054

[68] Hensarling R M, Doughty V A, Chan J W, Patton D L. J. Am. Chem. Soc., 2009, 131(41): 14673—14675

[69] Chen G J, Kumar J, Gregory A, Stenzel M H. Chem. Commun., 2009,(41): 6291—6293

[70] Konkolewicz D, Gray-Weale A, Perrier S. J. Am. Chem. Soc., 2009, 131(50): 18075—18077

[71] Chan J W, Hoyle C E, Lowe A B. J. Am. Chem. Soc., 2009, 131(16): 5751—5753

[72] Fairbanks B D, Scott T F, Kloxin C J, Anseth K S, Bowman C N. Macromolecules, 2009, 42(1): 211—217

[73] Fairbanks B D, Sims E A, Anseth K S, Bowman C N. Macromolecules, 2010, 43: 4113—4119

[74] Baskin J M, Prescher J A, Laughlin S T, Agard N J, Chang P V, Miller I A, Lo A, Codelli J A, Bertozzi C R. Proc. Natl. Acad. Sci. USA, 2007, 104(43): 16793—16797

[75] Codelli J A, Baskin J M, Agard N J, Berozzi C R. J. Am. Chem. Soc., 2008, 130(34): 11486—11493

[76] Singh I, Zarafshani Z, Lutz J F, Heaney F. Macromolecules, 2009, 42(15): 5411—5413

[77] York A W, Kirkland S E, McCormick C L. Adv Drug Deliver Rev, 2008, 60(9): 1018—1036

[78] Golas P L, Matyjaszewski K. Chem. Soc. Rev., 2010, 39: 1338—1354

[1] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[2] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[3] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[4] 陈晓峰, 王开元, 梁芳铭, 姜睿祺, 孙进. 外泌体递药系统及其在肿瘤治疗中的应用[J]. 化学进展, 2022, 34(4): 773-786.
[5] 宫悦, 程一竹, 胡银春. 高分子导电水凝胶的制备及在柔性可穿戴电子设备中的应用[J]. 化学进展, 2022, 34(3): 616-629.
[6] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[7] 廖伊铭, 吴宝琪, 唐荣志, 林峰, 谭余. 环张力促进的叠氮-炔环加成反应[J]. 化学进展, 2022, 34(10): 2134-2145.
[8] 李立清, 吴盼旺, 马杰. 双网络凝胶吸附剂的构建及其去除水中污染物的应用[J]. 化学进展, 2021, 33(6): 1010-1025.
[9] 杨宇州, 李政, 黄艳凤, 巩继贤, 乔长晟, 张健飞. MOF基水凝胶材料的制备及其应用[J]. 化学进展, 2021, 33(5): 726-739.
[10] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[11] 张开宇, 高国伟, 李延生, 宋钰, 温永强, 张学记. DNA水凝胶在生物传感中的应用和发展[J]. 化学进展, 2021, 33(10): 1887-1899.
[12] 于秋灵, 李政, 窦春妍, 赵义平, 巩继贤, 张健飞. pH敏感性智能水凝胶的设计及其应用[J]. 化学进展, 2020, 32(2/3): 179-189.
[13] 章强, 黄文峻, 王延斌, 李兴建, 张宜恒. 基于铜催化叠氮-炔环加成反应的聚氨酯功能化[J]. 化学进展, 2020, 32(2/3): 147-161.
[14] 张芬铭, 田语舒, 郑绩, 陈堃, 冯岸超, 张立群. 基于PHPMA的生物医用功能高分子[J]. 化学进展, 2020, 32(2/3): 331-343.
[15] 苏喜, 葛闯, 陈李, 徐溢. 基于水凝胶的细菌传感检测[J]. 化学进展, 2020, 32(12): 1908-1916.