English
新闻公告
More
化学进展 2010, Vol. 22 Issue (12): 2353-2376 前一篇   后一篇

• 综述与评论 •

芴类蓝光生色团在合成有机电致发光材料中的应用

毛炳雪1, 张大鹏1, 华晓阳1, 姜鸿基1,2, 陈润锋1, 邓先宇1   

  1. 1. 有机电子与信息显示国家重点实验室培育基地信息材料与纳米技术研究院南京 邮电大学 南京 210046;
    2. 聚合物分子工程教育部重点实验室复旦大学 上海 200433
  • 出版日期:2010-12-24 发布日期:2010-11-04
  • 作者简介:e-mail:iamhjjiang@njupt.edu.cn
  • 基金资助:

    国家科技部重大科学研究计划(No.2009CB930600)、国家自然科学基金(No.20774043,60706017和20574012)、教育部重点项目(No.104246)、江苏省高校优秀科技创新团队项目(No.TJ207035和TJ209035)、复旦大学聚合物分子工程教育部重点实验室科研基金和南京邮电大学大学生科技创新训练计划(No.0703010123)资助

Application of Fluorene-Based Blue Light-Emitting Chromophores in Synthesis of Organic Electroluminescent Materials*

Mao Bingxue1, Zhang Dapeng1, Hua Xiaoyang1, Jiang Hongji1,2, Chen Runfeng1, Deng Xianyu1   

  1. 1. Key Laboratory for Organic Electronics & Information Displays, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210046, China;
    2. Key Laboratory of Molecular Engineering of Polymers, Ministry of Education, Fudan University, Shanghai 200433, China
  • Online:2010-12-24 Published:2010-11-04

有机电致发光技术在通信、信息、显示和照明等领域显现出巨大的商业应用前景, 十几年来一直是光电信息领域的研究热点之一。相对于无机电致发光材料,有机电致发光材料具有许多优点。芴作为一种具有刚性平面联苯结构的化合物,由于具有宽的能隙、高的发光效率和结构上易于修饰等特点,已成为一类受到各方关注的蓝光生色团。因此,芴类蓝光生色团在合成高效稳定电致蓝光材料、聚芴β相结构的调整、多功能化、主体材料、白光材料、有机激光及有机纳米发光材料等方面得到了广泛的应用。本文从材料合成的角度综述了芴类蓝光生色团在合成有机电致发光材料方面所取得的最新研究进展,讨论了芴类蓝光生色团在上述领域应用过程中所存在的问题和功能拓展方向,并对下一步需要研究的热点问题做了展望。

The organic electroluminescence (EL) technology, which has been the research focus in the field of electro-optical information, holds a wide range of potential application in domains of communication, information, display and illumination and so on. Organic EL materials have many advantages when compared to their inorganic counterparts. Fluorene, as a kind of rigid plane biphenyl compound with wide band gap, high luminescent efficiency and high flexibility to modify the molecule skeleton, has been a key blue-emitting chromophore in organic EL. In this regard, fluorene-based blue-emitting materials are widely used in synthesis of highly efficient blue light-emitting materials, host materials, white light-emitting materials, organic lasers and organic nanomaterials, among which adjustment of the β phase structure and multiple functionalization are also main research directions. In this review paper, the applications of fluorene-based bule-emitting chromophores in organic EL are discussed in detail, and the progress of polyfluorene and its derivatives in the aspect of host materials and white materials is reviewed. Fluorene-based organic nanomaterials are concisely introduced. The synthesis methods of the polymers are also concisely introduced. Finally, some issues to be addressed and hotspots to be further investigated are discussed.

Contents
1 Introduction
2 Highly efficient fluorene-based blue light-emitting materials
2.1 Synthesis and applications in organic light-emitting diodes of highly efficient and stable fluorene-based materials
2.2 β-Phase of polyfluorenes and its applications
2.3 Synthesis and characterizations of multifunctional blue light-emitting polyfluorenes
3 Fluorene-based host materials
3.1 Characterizations of fluorene-based host materials
3.2 Highly efficient fluorene-based green light-emitting copolymers
3.3 Red light-emitting electrophosphorescent polyfluorenes
3.4 Red-green light-emitting by co-doping dyes in fluorene-based host materials
4 Fluorene-based white light-emitting materials
4.1 Fluorene-based white light-emitting from host–dopants system
4.2 Fluorene-based white light-emitting from blending trichromatic or dichromatic polymers
4.3 Fluorene-based white organic light-emitting diodes with stacked trichromatic or dichromatic multilayer structures
4.4 Fluorene-based single white light-emitting polymers
5 Fluorene-based luminescent conjugated nanomaterials
6 Conclusion and outlook

中图分类号: 

()


[1] Lai W Y, He Q Y, Zhu R, Chen Q Q, Huang W. Adv. Funct. Mater., 2008, 18: 265—276

[2] Liu F, Xie L H, Tang C, Liang J, Chen Q Q, Peng B, Wei W, Gao Y, Huang W. Org. Lett., 2009, 11: 3850—3853

[3] Omer K M, Ku S Y, Wong K T, Bard A J. Angew. Chem., 2009, 121: 9464—9467

[4] Jiang Z Q, Liu Z Y, Yang C L, Zhong C, Qin J G, Yu G, Liu Y Q. Adv. Funct. Mater., 2009, 19: 3987—3995

[5] Tang C, Liu F, Xia Y J, Lin J, Xie L H, Zhong G Y, Fan Q L, Huang W. Org. Electron., 2006, 7: 155—162

[6] Liu F, Liu J Q, Liu R R, Hou X Y, Xie L H, Wu H B, Tang C, Wei W, Gao Y, Huang W. J. Phys. Chem. A, 2009, 47: 6451—6462

[7] Zhen C G, Chen Z K, liu Q D, Dai Y F, Shin R Y C, Chang S Y, Kieffer J. Adv. Mater., 2009, 21: 2425—2429

[8] Hsu S L, Chou C H, Chen C P, Wei K H. Adv. Funct. Mater., 2007, 17: 2534—2541

[9] Wen G A, Xin Y, Zhu X R, Zeng W J, Zhu R, Feng J C, Cao Y, Zhao L, Wang L H, Wei W, Peng B, Huang W. Polymer, 2007, 48: 1824—1829

[10] He Q Y, Lai W Y, Ma Z, Chen D R, Huang W. Eur. Polym. J., 2008, 44: 3169—3176

[11] Ribierre J C, Ruseckas A, Gaudin O P M, Samuel I D W, Barcena H, Staton S V, Burn P L. Org. Electron., 2009, 10: 803—808

[12] Wu C W, Tsai C M, Lin H C. Macromolecules, 2006, 39: 4298—4305

[13] Peng Q, Li M J, Lu S Q, Tang X H. Macromol. Rapid. Commun., 2007, 28: 785—791

[14] Zhu B, Han Y, Sun M H, Bo Z S. Macromolecules, 2007, 40: 4494—4500

[15] Wang L, Jiang Y, Luo J, Zhou Y, Zhou J, Wang J, Pei J, Cao Y. Adv. Mater., 2009, 21: 4854—4858

[16] Lai W Y, Zhu R, Fan Q L, Hou L T, Cao Y, Huang W. Macromolecules, 2006, 39: 3707—3709

[17] Lai W Y, Xia R D, He Q Y, Levermore P A, Huang W, Bradley D D C. Adv. Mater., 2009, 21: 355—360

[18] Xia R D, Lai W Y, Levermore P A, Huang W, Bradley D D C. Adv. Funct. Mater., 2009, 19: 2844—2850

[19] Luo J, Zhou Y, Niu Z Q, Zhou Q F, Ma Y G, Pei J. J. Am. Chem. Soc., 2007, 129: 11314—11315

[20] Peet J, Brocker E, Xu Y H, Bazan G C. Adv. Mater., 2008, 20: 1882—1885

[21] Zhu R, Lin J M, Wang W Z, Zheng C, Wei W, Huang W, Xu Y H, Peng J B, Cao Y. J. Phys. Chem.B, 2008, 112: 1611—1618

[22] Hung M C, Liao J L, Chen S A, Chen S H, Su A C. J. Am. Chem. Soc., 2005, 127: 14576—14577

[23] Oh S H, Na S I, Nah Y C, Vak D, Kim S S, Kim D Y. Org. Electron., 2007, 8: 773—783

[24] Sax S, Mauthner G, Piol T, Pradhan S, Scherf U, List E J W. Org. Electron., 2007, 8: 791—795

[25] Shi W, Jiang X, Zen W J, Huang F, Yamg W, Liu R S, Cao Y. Macromol. Chem. Phys., 2009, 210: 150—160

[26] Yang R Q, Xu Y H, Dang X D, Nguyen T Q, Cao Y, Bazan G C. J. Am. Chem. Soc., 2008, 130: 3282—3283

[27] Lee J F, Hsu S L C. Polymer, 2009, 50: 5668—5674

[28] Xu E, Zhong H L, Lai H, Zeng D L, Zhang J H, Zhu W Q, Fang Q. Macromol. Chem. Phys., 2010, 211: 651—656

[29] Huang F, Hou L T, Wu H B, Wang X H, Shen H L, Cao W, Yang W, Cao Y. J. Am. Chem. Soc., 2004, 126: 9845—9853

[30] Liu J, Bu L J, Dong J P, Zhou Q G, Geng Y H, Ma D G, Wang L X, Jing X B, Wang F S. J. Mater. Chem., 2007, 17: 2832—2838

[31] Ma Z H, Ding J Q, Zhang B H, Mei C Y, Cheng Y X, Xie Z Y, Wang L X, Jing X B, Wang F S. Adv. Funct. Mater., 2009, 20: 138—146

[32] Ying L, Zou J H, Yang W, Wu H B, Zhang A Q, Wu Z L, Gao Y. Macromol. Chem. Phys., 2009, 210: 457—466

[33] Zhang Y, Hou Q, Mo Y Q. Synthetic. Met., 2009, 159: 1234—1237

[34] Wu C H, Shin P I, Shu C F, Chi Y. Appl. Phys. Lett., 2008, 92: 233303.1—233303.3

[35] Chien C H, Hsu F M, Shu C F, Chi Y. Org. Electron., 2009, 10: 871—876

[36] Wu H B, Ying L, Yang W, Cao Y. Chem. Soc.Rev., 2009, 38: 3391—3400

[37] Peng K Y, Huang C W, Liu C Y, Chen S A. Appl. Phys. Lett., 2007, 91: art. no. 093502

[38] Huang J S, Hou W J, Li J H, Li G, Yang Y. Appl. Phys. Lett., 2006, 89: art. no. 133509

[39] Fan S Q, Sun M L, Wang J, Yang W, Cao Y. Appl. Phys. Lett., 2007, 91: art. no. 213502

[40] Kim T H, Lee H K, Park O O, Chin B D, Lee S H, Kim J K. Adv. Funct. Mater., 2006, 16: 611—617

[41] Wu H B, Zhou G J, Zou J H, Ho C L, Wong W Y, Yang W, Peng J B, Cao Y. Adv. Mater., 2009, 21: 4181—4184

[42] Zou J H, Liu J, Wu H B, Peng J B, Yang W, Cao Y. Org. Electron., 2009, 10: 843—848

[43] Shih P I, Tseng Y H, Wu F I, Dixit A K, Shu C F. Adv. Funct. Mater., 2006, 16: 1582—1589

[44] Zhang Y, Huang F, Chi Y, Jen A K Y. Adv. Mater., 2008, 20: 1565—1570

[45] Huang F, Shih P I, Shu C F, Chi Y, Alex K, Jen Y. Adv. Mater., 2009, 21: 361—365

[46] Niu X D, Qin C J, Zhang B H, Yang J W, Xie Z Y, Cheng Y X, Wang L X. Appl. Phys. Lett., 2007, 90: art. no. 203513.1

[47] Xu Y H, Yang R Q, Peng J B, Mikhailovsky A A, Cao Y, Nguyen T Q, Bazan G C. Adv. Mater., 2009, 21: 584—588

[48] An D, Zou J H, Wu H B, Peng J B, Yang W, Cao Y. Org. Electron., 2009, 10: 299—304

[49] Tu G L, Mei C Y, Zhou Q G, Cheng Y X, Geng Y H, Wang L X, Ma D G, Jing X B, Wang F S. Adv. Funct. Mater., 2006, 16: 101—106

[50] Liu J, Zhou Q G, Cheng Y X, Geng Y H, Wang L X, Ma D G, Jing X B, Wang F S. Adv. Funct. Mater., 2006, 16: 957—965

[51] Liu J, Shao S Y, Chen L, Xie Z Y, Cheng Y X, Geng Y H, Wang L X, Jing X B, Wang F S. Adv. Mater., 2007, 19: 1859—1859

[52] Guo X, Qin C J, Cheng Y X, Xie Z Y, Geng Y H, Jing X B, Wang F S, Wang L X. Adv. Mater., 2009, 21: 3682—3688

[53] Liu J, Chen L, Shao S Y, Xie Z Y, Cheng Y X, Geng Y H, Wang L X, Jing X B, Wang F S. Adv. Mater., 2007, 19: 4224—4428

[54] Jiang J X, Xu Y H, Yang W, Guan R, Liu Z Q, Zhen H Y, Cao Y. Adv. Mater., 2006, 18: 1769—1773

[55] Zhen H Y, Xu W, Yang W, Chen Q L, Xu Y H, Jiang J X, Peng J B, Cao Y. Macromol. Rapid Commun., 2006, 27: 2095—2100

[56] Chien C H, Liao S F, Wu C H, Shu C F, Chang S F, Chi Y, Chouand P T, Lai C H. Adv. Funct. Mater., 2008, 18: 1430—1439

[57] Andrew C, Grimsdale M K. Angew. Chem. Int. Ed., 2005, 44: 5592—5629

[58] Niu Q, Zhou Y, Wang L, Peng J, Wang J, Pei J, Cao Y. Adv. Mater., 2008, 20: 964—969

[59] Luo J, Lei T, Xu X G, Li F M, Ma Y G, Wu K, Pei J. Chem-Eur. J., 2008, 14: 3860—3865

[60] Luo J, Lei T, Wang L, Ma Y G, Cao Y, Wang J, Pei J. J. Am. Chem. Soc., 2009, 131: 2076—2077

[61] O'Carroll D, Lacopino D, Redmond G. Adv. Mater., 2009, 21: 1160—1165

[62] 姜鸿基 (Jiang H J), 冯嘉春 (Feng J C), 温贵安 (Wen G A), 韦玮 (Wei W), 徐筱杰 (Xu X J), 黄维 (Huang W). 化学进展 (Progress in Chemistry), 2005, 17: 818—825

[63] Grimsdale A C, Chan K L, Martin R E, Jokisz P G, Holmes A B. Chem. Rev., 2009, 109: 897—1091

[64] Chan K L, McKiernan M J, Towns C R, Holmes A B. J. Am. Chem. Soc., 2005, 127: 7662—7663

[65] Cho S Y, Grimsdale A C, Jones D J, Watkins S E, Holmes A B. J. Am. Chem. Soc., 2007, 129: 11910—11911

[66] Holder E, Langeveld B M W, Schubert U S. Adv. Mater., 2005, 17:1109—1121

[67] Tao Y T, Wang Q, Yang C L, Wang Q, Zhang Z Q, Zhou T T, Qin J G, Ma D G. Angew. Chem. Int. Ed., 2008, 47, 8104—8107

[68] Abbel R, Grenier C, Pouderoijen M J, Stouwdam J W, Leclère P E L G, Sijbesma R P, Meijer E W, Schenning A P H J. J. Am. Chem. Soc., 2009, 131: 833—843

[69] Hoeben F J M, Jonkheijm P, Meijer E W, Schenning A P H J. Chem. Rev., 2005, 105: 1491—1546

[70] Ryu G, Stavrinou P N, Bradley D D C. Adv. Funct. Mater., 2009, 18: 3237—3242

[71] Como E D, Becker K, Feldmann J, Lupton J M. Nano Lett., 2007, 7: 2993—2998

[1] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[2] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[3] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[4] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[5] 职怡缤, 于兰, 李欢欢, 陶冶, 陈润锋, 黄维. 芳基硅磷光主体材料在有机电致发光器件中的应用[J]. 化学进展, 2022, 34(5): 1109-1123.
[6] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[7] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[8] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.
[9] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[10] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
[11] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[12] 程熙萌, 张庆瑞. 功能蛋白纳米材料在环境保护中的应用[J]. 化学进展, 2021, 33(4): 678-688.
[13] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[14] 蒋乔, 徐雪卉, 丁宝全. 纳米材料对生物凝聚态的调控[J]. 化学进展, 2020, 32(8): 1128-1139.
[15] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.