English
新闻公告
More
化学进展 2010, Vol. 22 Issue (12): 2309-2315 前一篇   后一篇

• 综述与评论 •

二维多环全苯芳烃的合成、性能及应用

顾盾寅, 黄美荣, 李新贵   

  1. 同济大学材料学院 先进土木工程材料教育部重点实验室 材料化学研究所 上海 200092
  • 出版日期:2010-12-24 发布日期:2010-11-04
  • 作者简介:e-mail:huangmeirong@tongji.edu.cn
  • 基金资助:

    国家自然科学基金项目(50873077)资助

Synthesis, Properties and Applications of the 2-D Polycyclic all-Benzenoid Aromatic Hydrocarbons

Gu Dunyin, Huang Meirong, Li Xingui   

  1. Institute of Materials Chemistry, Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, College of Materials Science and Engineering, Tongji University, Shanghai 200092, China
  • Online:2010-12-24 Published:2010-11-04

二维多环全苯芳香烃(PBAH)具有类似于石墨的结构形态,拥有良好的稳定性,被视作一种理想的导电材料,自问世以来受到了广泛关注。本文详细总结了由树枝形聚苯前驱体平面化而制得PBAH的合成方法, 指出了PBAH的表征难点,阐述了PBAH的多功能性如热致液晶性、导电性以及光学性能,展示了PBAH在电子传输材料、场效应晶体管、光伏电池、发光二极管、二次电池等方面的应用前景。特别指出了带有柔性侧链的PBAH分子可以形成碟状的液晶态,从而呈现有序的超分子结构,在各种PBAH光电材料的应用中占据领先地位。

The 2-D polycyclic all-benzenoid aromatic hydrocarbons (PBAH), which are considered as a kind of ideal electric conductive materials because of their graphite-like structures and excellent stability, have attracted considerable intersts since their invention. The syntheses of the PBAH via planarization of the polyphenylene dendrimers are elaborated and the difficulties in the characterization of the PBAH are indicated in this review. Properties of the PBAH are discussed, such as thermotropic liquid crystallinity, electric conductivity and optical characteristics. The applications of the PBAH in the production of electron transport materails, field effect transistors, photovoltaic cells, light emitting diodes and secondary batteries are also presented. In particular, the PBAH bearing flexible side groups has the ability to form an ordered disc supramolecular structure in liquid crystalline state, which makes them lead the way in potential applications as a variety of optoelectric materials.

Contents
1 Introduction
2 Synthesis of PBAH
2.1 Synthesis of the precursor-PD
2.2 Cyclodehydrogenation of PD
3 Mass characterization of PBAH
4 Properties of PBAH
4.1 Thermotropic liquid crystallinity of PBAH[ZK)]
4.2 Optical performances of PBAH
4.3 Transportation of carriers in PBAH
5 Applications of PBAH
5.1 Electron-transporting materials
5.2 FET
5.3 Photovoltaic cell
5.4 LED
5.5 Rechargeable battery
6 Conclusion and outlook

中图分类号: 

()


[1] Li X G, Liu Y W, Huang M R, Peng S, Gong L Z, Moloney M G. Chem. Eur. J., 2010, 16(16): 4803—4813

[2] 黄美荣 (Huang M R), 高鹏(Gao P), 李新贵(Li X G). 化学进展(Progress in Chemistry), 2010, 22(1): 113—118

[3] Sergei A A, Valerii M K. Chem. Phys., 2000, 201: 809—814

[4] Miller T M, Neenan T X. Chem. Mater., 1990, 2(4): 346—349

[5] Müller M, Kübel C, Müllen K. Chem. Eur. J., 1998, 4(11): 2099—2109

[6] Watson M D, Fechtenktter A, Müllen K. Chem. Rev., 2001, 101: 1267—1300

[7] Müllen K, Rabe J P. Ann. N. Y. Acad. Sci., 1998, 852: 205—218

[8] Berresheim A J, Müller M, Müllen K. Chem. Rev., 1999, 99: 1747—1785

[9] Shen X, Ho D M, Pascal R A. Org. Lett., 2003, 5(3): 369—371

[10] Hyatt, John A. Org. Prep. Proc. Int., 1991, 23(4): 460—463

[11] Wu J, Watson M D, Müllen K. Angew. Chem., 2003, 115: 5487—5491

[12] Ito S, Wehmeier M, Brand J D, Kübel C, Epsch R, Rabe J P, Müllen K. Chem. Eur. J., 2000, 6(23): 4327—4342

[13] Iyer V S, Wehmeier M, Brand J D, Keegstra M A, Müllen K. Angew. Chem. Int. Ed., 1997, 36(15): 1603—1607

[14] Morgenroth F, Müllen K. Tetrahedron, 1997, 45(53): 15349—15366

[15] Xiao S X, Myers M, Miao Q, Sanaur S, Pang K, Steigerwald M L, Nuckolls C. Angew. Chem. Int. Ed., 2005, 44(45): 7390—7394

[16] Müller M, Düll H M, Wagner M. Angew. Chem. Int. Ed., 1995, 34(15): 1583—1586

[17] Kovacic P, Jones M B. Chem. Rev., 1987, 87: 357—379

[18] Rempala P, Kroulik J, King B T. J. Org. Chem., 2006, 71: 5067—5081

[19] Morgenroth F, Kübel C, Müller M. Carbon, 1998, 36(5—6): 833—837

[20] Müller M, Iyer V S, Kübel C, Enkelmann V, Müllen K. Angew. Chem. Int. Ed., 1997, 36(15): 1607—1610

[21] Dou X, Yang X, Bodwell G J, Wagner M, Enkelmann V, Müllen K. Org. Lett., 2007, 9 (13): 2485—2488

[22] Przybilla L, Brand J D, Yoshimura K, Rdar H J, Müllen K. Anal. Chem., 2000, 72(19): 4591—4597

[23] Simpson C D, Mattersteig G, Martin K, Gherghel L, Bauer R E, Rdar H J, Müllen K. J. Am. Chem. Soc., 2004, 126: 3139—3147

[24] Liu C Y, Fechtenktter A, Watson M D, Müllen K, Bard A J. Chem. Mater., 2003, 15: 124—130

[25] Fogel Y. Doctoral Dissertation of Johannes Gutenberg University Mainz, 2005

[26] Herwig P, Kayser C W, Müllen K. Adv. Mater., 1996, 8: 510—513

[27] Simpson C D, Brand J D, Berresheim A J, Przybilla L, Rdar H J, Müllen K. Chem. Eur. J., 2002, 8: 1424—1429

[28] Debije M G, Piris J, de Haas M P, Warman J M, Tomovi E, Simpson C D, Watson M D, Müllen K. J. Am. Chem. Soc., 2004, 126: 4641—4645

[29] Sergeyev S, Pisula W, Geerts Y H. Chem. Soc. Rev., 2007, 36: 1902—1929

[30] Van de Craats A M, Warman J M, Müllen K, Geerts Y, Brand J D. Adv. Mater., 1998, 10(1): 36—38

[31] Pisula W, Tomovic Z, Simpson C, Kastler M, Pakula T, Müllen K. Chem. Mater., 2005, 17: 4296—4303

[32] Feng X L, Marcon V, Pisula W, Hansen M R, Kirkpatrick J, Grozema F, Andrienko D, Kremer K, Müllen K. Nat. Mater., 8, 2009: 421—426

[33] Hill J P, Jin W, Kosaka A, Fukushima T, Ichihara H, Shimomura T, Ito K, Hashizume T, Ishii N, Aida T. Science, 2004, 304: 1481—1483

[34] Pisula W, Menon A, Stepputat M, Kolb U, Tracz A, Sirringhaus H, Pakula T, Müllen K. Adv. Mater., 2005, 17: 684—689

[35] Mori T, Takeuchi H, Fujikawa H. J. Appl. Phys., 2005, 97: art. no. 066102-1

[36] Schmidt-Mende L, Fechtenkotter A, Müllen K, Moons E, Friend R H, Mackenize J D. Sci., 2001, 293: 1119—1122

[37] Mativetsky J M, Kastler M, Savage R C, Gentilini D, Palma M, Pisula W, Müllen K, Samori P. Adv. Funct. Mater., 2009, 19: 2486 —2494

[38] Seguy I, Destruel P, Bock Harald. Synth. Met., 2000, 111/112: 15—18

[39] Gherghel L, Kübel C, Lieser G, Rdar H J, Müllen K. J. Am. Chem. Soc., 2002, 124: 13130—13138

[40] Zhi C, Wu J, Li J, Kolb U, Müllen K. Angew. Chem. Int., 2005, 44: 2120—2123

[41] Wu J, El Hamaoui B, Li J, Zhi L J, Kolb U, Müllen K. Small, 2005, 1: 210—212

[42] Bonino F, Brutti S, Reale P, Scrosati B, Gherghel L, Wu J, Müllen K. Adv. Mater., 2005, 17: 743—746

[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[3] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[4] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[5] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[6] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[7] 林业竣, 李艳梅. 翻译后修饰Tau蛋白及其化学全/半合成[J]. 化学进展, 2022, 34(8): 1645-1660.
[8] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[9] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[10] 王鹏, 刘欢, 杨妲. 烯烃的氢甲酰化串联反应研究[J]. 化学进展, 2022, 34(5): 1076-1087.
[11] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[12] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[13] 赵聪媛, 张静, 陈铮, 李建, 舒烈琳, 纪晓亮. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用[J]. 化学进展, 2022, 34(2): 397-410.
[14] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[15] 杨林颜, 郭宇鹏, 李正甲, 岑洁, 姚楠, 李小年. 钴基费托合成催化剂的表界面性质调控[J]. 化学进展, 2022, 34(10): 2254-2266.