English
新闻公告
More
化学进展 2010, Vol. 22 Issue (12): 2298-2308 前一篇   后一篇

• 综述与评论 •

贵金属纳米粒子修饰碳纳米管的研究

夏文健1,2, 孟令杰2, 刘丽1, 路庆华2   

  1. 1. 上海大学材料科学与工程学院 上海 20007;
    2. 上海交通大学化学化工学院 上海 200240
  • 出版日期:2010-12-24 发布日期:2010-11-04
  • 作者简介:e-mail:menglingjie@sjtu.edu.cn; liuli@staff.shu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.20874059,20904030),国家高技术发展计划(863)项目(No.2009AA03Z329)和上海市重点学科建设项目(B202)资助

Carbon Nanotubes Decorated with Noble Metal Nanoparticles

Xia Wenjian1,2, Meng Lingjie2, Liu Li1, Lu Qinghua2   

  1. 1. School of Materials Science and Engineering, Shanghai University, Shanghai 20007;
    2. School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Online:2010-12-24 Published:2010-11-04

碳纳米管具有独特的一维管状结构和优异的电、光、热和力学性能,是药物和纳米催化剂的理想载体。将具有独特光、电、磁和催化性能的贵金属纳米粒子负载在碳纳米管的表面,形成的碳纳米管/贵金属纳米粒子复合物不仅兼有两种纳米材料的优异性能,还可能产生新的特性,在催化、储能、燃料电池、电子器件和传感器等领域均有广阔的应用前景。本文主要从共价修饰和非共价修饰两种策略出发,综述了贵金属纳米粒子修饰碳纳米管的制备方法和研究进展。其中用天然高分子包覆的碳纳米管表面具有很好的贵金属配位结合能力,得到的纳米复合物具有良好的水分散性和生物相容性,在载药、生物传感器和肿瘤诊断治疗等生物领域具有明显的优势。

One-dimensional carbon nanotubes (CNTs) have a unique tubular structure and excellent electrical, optical, thermal and mechanical properties. Meanwhile, zero-dimensional noble metal nanoparticles (NMNPs) also exhibit unique optical, electrical, magnetic and catalytic properties. Combined these two nano-materials together through supporting metal nanoparticles on the surface of carbon nanotubes, a new kind of nano-hybrid of metal and nonmetal are created,this nano-hybrid can not only possess their intrinsic outstanding performance, but also will give birth to some extraordinary characteristics, significantly having potential applications in the fields of chemical catalysis, hydrogen storage, direct alcohol fuel cells, electronic devices and bio-sensors. In this review, the suggested methods about the decoration of NMNPs on CNTs are generally discussed, primarily including the covalent modification and non-covalent modification. In particular, the techniques about the functionalization of carbon nanotubes with the natural polymer (such as DNA, polypeptides, polysaccharides and DNA) are additionally introduced, and the modified CNTs actually exhibit not only good biocompatibility, but also may effectively facilitate the dispersion of the CNTs in most solvents and improve the amount of NMNPs decorated on nanotubes, therefore, the as-prepared CNTs/NMNPs nano-hybrids have obvious advantages for some biological applications such as drug delivery, bio-sensors, immobilization and separation of proteins and cancer diagnosis or treatment.

Contents
1 Introduction
2 Strategies for modification
2.1 Directly covalent modification of CNTs
2.2 Covalent modification on the functional groups of CNTs
2.3 Non-covalent wrapping of CNTs
3 Research progress of the CNTs/NMNPs nano- hybirds
3.1 In situ precipitation method
3.2 Covalent modification of CNTs
3.3 Non-covalent modification of CNTs
3.4 Natural polymer wrapping CNTs
4 Conclusion

中图分类号: 

()


[1] Iijima S. Nature, 1991, 354:56—58

[2] Lijima S, Lchihashi T. Nature, 1993, 363:603—605

[3] Ebbesen T W, Ajayan P M. Nature, 1992, 358 (6383):220—222

[4] Guo T, Nikolaev P, Thess A, Colbert D T, Smalley R E. Chem. Phys. Lett., 1995, 243:49—54

[5] Endo M, Takeuchi K, Igarashi S, Kobori K, Shiraishi M, Kroto H W. J. Phys. Chem. Solids., 1993, 54 (12):1841—1848 6] Baughman R H, Zakhidov A A, Heer W A. Science, 2002, 297 (5582):787—792

[7] Evseeva L E, Tanaeva S A. Mech. Compos. Mater., 2008, 44 (1):87—92

[8] Tans S J, Devoret M H, Dai H J, Thess A, Smalley R E, Geerligs L J, Dekker C. Nature, 1997, 386 (6624):474—477

[9] Meng L J, Fu C L, Lu Q H. Prog. Natur. Sci., 2009, 19:801—810

[10] Nadja C B, Alexander E. Phil. Trans. R. Soc. A, 2010, 368:1385—1404

[11] Kahrama M, Zamaleeva A I, Fakhrullin R F, Culha M. Anal. Bioanal. Chem., 2009, 395:2559—2567

[12] Li L, Xing Y C. J. Phys. Chem. C, 2007, 111:2803—2808

[13] Chu H B, Wang J Y, Ding L, Yuan D N, Zhang Y, Liu J, Li Y. J. Am. Chem. Soc., 2009, 131:14310—14316

[14] Oldenburg S J, Averitt R D, Westcott S L, Halas N J. Chem. Phys. Lett., 1998, 288:243—247

[15] Daniel M C, Astruc D. Chem. Rev., 2004, 104:293—346

[16] Pileni M P. Nat. Mater., 2003, 2 (3):145—150

[17] Sun Y G, Xia Y N. Science, 2002, 298 (5601):2176—2179

[18] Du J M, Han B X, Liu Z M. Cryst. Growth Des., 2007, 7 (5):900—904

[19] Voorhees P W. J. Statist. Phys., 1985, 38 (1/2):231—252

[20] Gutiérrez M C, Hortigüela M J, Amarilla J M, Jiménez R, Ferrer M L, Monte F D. J. Phys. Chem. C, 2007, 111 (15):5557—5560

[21] Kim J W, Galanzha E L, Shashkov E V, Moon H M, Zharov V P. Nat. Nanotech., 2009, 4:688—694

[22] Zheng L F, Li S D, Burke P J. Proc. SPIE, 2004, 5515:117—124

[23] Banerjee S, Benny T H, Wong S S. Adv. Mater., 2005, 17 (1):17—29

[24] Shi J, Wang Z, Li H L. J. Nanoparticle Research, 2006, 8:743—747

[25] Fischer J E. Acc. Chem. Res., 2002, 35:1079—1086

[26] Planeix J M, Coustel N, Coq B, Brotons V, Kumbhar P S, Dutartre R, Geneste P, Bernier P, Ajayan P M. J. Am. Chem. Soc., 1996, 116:7935—7936

[27] Kim D S, Lee T, Geckeler K E. Angew. Chem. Int. Ed., 2006, 45:104—107

[28] Zanella R, Basiuk E V, Santiago P, Basiuk V A, Mireles E, Lee I P, Saniger J M. J. Phys. Chem. B, 2005, 109:16290—16295

[29] Balasubramanian K, Burghard M. Small, 2005, 1 (2):180—192

[30] Zhang D S, Shi L Y, Fang J H. Mater. Lett., 2005, 59 (29):4044—4047

[31] Yu J G, Huang K L, Liu S Q. Chinese Journal of Chemistry, 2008, 26 (3):560—563

[32] Vogel S R, Muller K, Plutowski U. Phy. Status Solid B, 2007, 244 (11):4026—4029

[33] Fullam S, Cottell D, Rensmo H, Fitzmaurice D. Adv. Mater., 2000, 12 (19):1430—1432

[34] Planeix J M, Coustel N, Coq B, Brotons V, Kumbhar P S, Dutartre R, Geneste P, Bernier P, Ajayan P M. J. Am. Chem. Soc., 1994, 116:7935—7936

[35] Chetty R, Kundu S, Xia W, Bron M, Schuhmann W, Chirila V, Brandi W, Reinecke T, Muhler M. Electrochimica Acta, 2009, 54:4208—4215

[36] Suarez-Martinez I, Bittencourt C, Ke X, Felten A, Pireaux J J, Chihsen J, Drube W, Tendeloo G V, Ewels C P. Carbon, 2009, 47:1549—1554

[37] Yu R Q, Chen L W, Liu Q P, Lin J Y, Tan K L, Ng S C, Chan H S O, Xu G Q, Hor T S A. Chem. Mater., 1998, 10 (3):718—722

[38] Li W Z, Liang C H, Zhou W J. Carbon, 2004, 42 (2):436—439

[39] Kim D S, Lee T, Geckeler K E. Angew. Chem. Int. Ed., 2006, 45:104—107

[40] Choi H C, Shim M, Bangsaruntip S, Dai H J. J. Am. Chem. Soc., 2002, 124:9058—9059

[41] Wang J S, Pan H B, Chien M. J. Nanosci. Nanotech., 2006, 6 (7):2025—2030

[42] Sun Z Y, Liu Z M, Han B X, Miao S D, Miao Z J, An G M. J. Col. Inter. Sci., 2006, 304:323—328

[43] Fási A, Pálinkó I, Seo J W, Kónya Z, Hernadi K, Kiricsi I. Chem. Phy. Lett., 2003, 272:848—852

[44] Satishkumar B C, Vogl E M, Govindaraj A, Rao C N R. J. Phys. D: Appl. Phys., 1996, 29:3173—3176

[45] Raghuveer M S, Agrawal S, Bishop N, Ramannath G. Chem. Mater., 2006, 18 (6):1390—1393

[46] Liu J, Rinzler A G, Dai H, Hafner J H, Bradley R K, Boul P J, Lu A, Iverson T, Shelimov K, Huffman C B, Macias F R, Shon Y S, Lee T R, Colbert D T, Smalley R E. Science, 280 (5367):1253—1256

[47] Niyogi S, Hamon M A, Hu H, Zhao B, Bhowmik P, Sen R, Itkis M E, Haddon R C. Acc. Chem. Res., 2002, 35 (12):1105—1113

[48] Chiu P W, Duesberg G S, Dettlaff U, Roth S. Appl. Phys. Lett., 2002, 80 (20):811—3813

[49] Banerjee S, Wong S S. Nano Lett., 2002, 2 (3):195—200

[50] Zanella R, Basiuk E V, Santiago P, Basiuk V A, Mireles E, Lee I P, Saniger J M. J. Phys. Chem. B, 2005, 109:16290—16295

[51] Basiuk E V, Basiuk V A, Baňuelos J G, Saniger J M, Pokrovskiy V A, Gromovoy T Y, Mischanchuk A V, Mischanchuk B G. J. Phys. Chem. B, 2002, 106 (7):588—1597

[52] Kim K S, Demberelnyamba D, Lee H. Langmuir, 2004, 20:556—560

[53] Wang Z, Zhang Q, Kuehner D, Xu X, Ivaska A, Niu L. Carbon, 2008, 46 (13):1687—1692

[54] Gao C, Vo C D, Jin Y Z, Li W W, Armes S P. Macromolecules, 2005, 38 (21):8634—8648

[55] Reddy K R, Sin B C, Ryu K S, Kim J C, Chung H, Lee Y. Synthetic Metals, 2009, 159:595—603

[56] Lou X D, Daussin R, Cuenot S, Duwez A, Pagnoulle C, Detrembleur C, Bailly C, Jérǒme R. Chem. Mater., 2004, 16:4005—4011

[57] Chen R J, Zhang Y G, Wang D W, Dai H J. J. Am. Chem. Soc., 2001, 123 (16):3838—3839

[58] Wei G, Pan C J, Reichert J, Jandt K D. Carbon, 2010, 48:645—653

[59] Yeh J M, Huang K Y, Lin S Y, Wu Y Y, Huang C C, Liou S J. J. Nanotechnology, 2009, 2009 art. no. 217469

[60] Liu L Q, Wang T X, Li J X, Guo Z X, Dai L M, Zhang D Q, Zhu D B. Chem. Phy. Lett., 2003, 367:747—752

[61] Guldi D M, Rahman G M A, Jux N, et al. Angewandte Chemie-International Edition, 2004, 43 (41):5526—5530

[62] Lou X D, Daussin R, Cuenot S, Duwez A, Pagnoulle C, Detrembleur C, Bailly C, Jérǒme R. Chem. Mater., 2004, 16:4005—4011

[63] Ou Y Y, Huang M H. J. Phys. Chem. B, 2006, 110 (5):2031—2036

[64] Georgakilas V, Tzitzios V, Gournis D, Petridis D. Chem. Mater., 2005, 17 (7):1613—1617

[65] Yang Z, Chen X H, Chen C S, Li W H, Zhang H, Xu L S, Yi B. Polymer Composites, 2007:36—41

[66] Chen S H, Yuan R, Chai Y Q, Zhang L Y, Wang N, Li X L. Biosensors and Bioelectronics, 2007, 22 :1268—1274

[67] Wu B H, Hu D, Kuang Y J, Liu B, Zhang X H, Chen J H. Angew. Chem. Int. Ed., 2009, 48:4751—4754

[68] Jiang K Y, Eitan A, Schadler L S, Ajayan P M, Siegel R W. Nano Lett., 2003, 3 (3):275—277

[69] Kim B, Sigmurd W M. Langmuir, 2004, 20 (19):8239—8242

[70] Zhang M N, Su L, Mao L Q. Carbon, 2006, 44:276—283

[71] Liu Y, Jiang W, Li S, Li F S. App. Sur. Sci., 2009, 255:7999—8002

[72] Jiang L Q, Gao L. Carbon, 2003, 41:2923—2929

[73] Ragupathy D, Gopalan A I, Lee K P. Electrochem. Commun., 2009, 11:397—401

[74] Huang H Z, Yang X R. Coll. surf. A: Physicochem. Eng. Aspects, 2003, 226:77—86

[75] Ellis A V, Vijayamohanan K, Goswami R, Chakrapani N, Ramanathan L S, Ajayan P M, Ramanath G. Nano Lett., 2003, 3 (3):279—282

[76] Wang D, Li Z C, Chen L W. J. Am. Chem. Soc., 2006, 128:15078—15079

[77] Han L, Wu W, Kirk F L, Luo J, Maye M M, Kariuki N N, Lin Y H, Wang C M, Zhong C J. Langmuir, 2004, 20 (14):6019—6025

[78] Numata M, Asai M, Kaneko K J, Bae A H, Hasegawa T, Sakurao K, Shinkai S. J. Am. Chem. Soc., 2005, 127 (16):5875—5884

[79] Li H Y, Park S H, Relf J H, LaBean T H, Yan H. J. Am. Chem. Soc., 2004, 126 (2):418—419

[80] Sharma J, Chhabra R, Cheng A, Brownell J, Liu Y, Yan H. Science, 2009, 323 (112):112—116

[81] Zheng M, Jagota A, Strano M S, Santos A P, Barone P, Chou S G, Diner B A, Dresselhaus M S, Mclean R S, Onoa B, Samsonidze G G, Semke E D, Usrey M, Walls D J. Science, 2003, 302 (5650):1545—1548

[82] Liu Z, Winters M, Holodniy M, Dai H J. Angew. Chem. Int. Ed., 2007, 46:2023—2027

[83] Ostojic G N, Ireland J R, Hersam M C. Langmuir, 2008, 24:9784—9789

[84] Chen Y, Liu H P, Ye T, Kim J, Mao C D. J. Am. Chem. Soc., 2007, 129:8696—8697

[85] Li B, Li L Y, Wang B B, Li C Y. Nat. Nanotech., 2009, 4:358—362

[86] Karajanagi S S, Yan H C, Asuri P, Sellitto E, Dordick J S, Kane R S. Langmuir, 2006, 22 (4):1392—1395

[87] Poenitzsch V Z, Winters D C, Hui X, Dieckmann G R, Dalton A B, Musselman I H. J. Am. Chem. Soc., 2007, 129 (47):14724—14732

[88] Kumar N A, Bund A, Cho B G, Lim K T, Jeong Y T. Nanotechnology, 2009, 20 art. no. 225608

[89] Kim O K, Je J, Baldwin J W, Kooi S, Pehrsson P E, Buckley L J. J. Am. Chem. Soc., 2003, 125 (15):4426—4427

[90] Fu C L, Meng L J, Lu Q H, Zhang X K, Gao C. Macromol. Rapid Commun., 2007, 28:2180—2184

[91] Jiang H J, Zhao Y, Yang H, Akins D L. Mater. Chem. Phys., 2009, 114:879—883

[92] Zhang X K, Meng L J, Lu Q H. ACS Nano, 2009, 3 (10):3200—3206

[1] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[2] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[3] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[4] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[5] 杜宇轩, 江涛, 常美佳, 戎豪杰, 高欢欢, 尚玉. 基于非稠环电子受体的有机太阳能电池材料与器件[J]. 化学进展, 2022, 34(12): 2715-2728.
[6] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[7] 李庚, 李洁, 姜泓宇, 梁效中, 郭鹍鹏. 力刺激响应发光聚合物[J]. 化学进展, 2022, 34(10): 2222-2238.
[8] 朱彬彬, 郑晓慧, 杨光, 曾旭, 邱伟, 徐斌. 氧化石墨烯分离膜机械性能调控[J]. 化学进展, 2021, 33(4): 670-677.
[9] 张一, 张萌, 佟一凡, 崔海霞, 胡攀登, 黄苇苇. 多羰基共价有机骨架在二次电池中的应用[J]. 化学进展, 2021, 33(11): 2024-2032.
[10] 胡子涛, 丁寅. 基于共价有机框架材料的纳米体系在生物医学中的应用[J]. 化学进展, 2021, 33(11): 1935-1946.
[11] 杨文清, 谢大乐, 程俊, 唐维克, 汪若冰, 冯乙巳. 负载型BINAP-M类催化剂[J]. 化学进展, 2021, 33(10): 1706-1720.
[12] 陈香李, 刘凯强, 房喻. 分子凝胶:从结构调控到功能应用[J]. 化学进展, 2020, 32(7): 861-872.
[13] 侯晨, 陈文强, 付琳慧, 张素风, 梁辰. 共价有机框架材料在固定化酶及模拟酶领域的应用[J]. 化学进展, 2020, 32(7): 895-905.
[14] 赵苏艳, 刘畅, 徐浩, 杨晓博. 二维共价有机框架光催化剂[J]. 化学进展, 2020, 32(2/3): 274-285.
[15] 张丹维, 王辉, 黎占亭. 芳香大分子和超分子螺旋管构筑及其功能[J]. 化学进展, 2020, 32(11): 1665-1679.