English
新闻公告
More
化学进展 2010, Vol. 22 Issue (12): 2290-2297 前一篇   后一篇

• 综述与评论 •

基于Cu2O的光催化研究

徐晨洪, 韩优, 迟名扬   

  1. 天津大学化工学院 天津 300072
  • 出版日期:2010-12-24 发布日期:2010-11-04
  • 作者简介:e-mail:yhan@tju.edu.cn

Cu2O-Based Photocatalysis

Xu Chenhong, Han You, Chi Mingyang   

  1. School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
  • Online:2010-12-24 Published:2010-11-04

光催化技术可以利用太阳能将水转化为氢能以及降解环境中的有机污染物,具有成本低廉、环境友好等特点, 是解决全球能源危机和当前环境污染的重要途径之一。 Cu2O禁带宽度介于2.0—2.2eV之间,是一种具有可见光响应的p型氧化物半导体,在光催化领域具有良好的应用前景,逐渐成为国内外研究的热点。本文介绍了Cu2O晶体特殊的网络结构和能带结构特点以及对其进行的掺杂和复合等改性研究,概述了Cu2O及其改性材料在光解水制氢及光降解有机污染物方面的研究进展,阐明提高Cu2O光催化效率的关键是抑制光生载流子的复合和Cu2O的光腐蚀。指出了基于Cu2O的光催化反应中存在的问题,并对未来的研究方向做出了展望。

Photocatalysis became one of the important ways to solve the current global energy crisis and environmental pollution in recent years. It uses solar energy to product hydrogen via water splitting and degenerate the organic pollutants, which is not only low-cost but also environmentally friendly. Cu2O is a p-type oxide semiconductor with the band gap of 2.0—2.2eV based on its size and shape. Therefore Cu2O can adsorb the visible part of the sunlight and has a potential application in the photocatalytic field. In this review, we introduce the structural characteristics of CuO, which contains three-dimensional Cu2O networks and special band structure. Then, the modification of Cu2O including doping and coupling are described. Furthermore, the researches on the water splitting and the degeneration of organic compounds using Cu2O and modified Cu2O photocatalysts are discussed. The keys which inhibit the photocatalytic efficiency of Cu2O are the recombination of the photo-excitated electrons and holes as well as the photo corrosion of Cu2O. In the end, the ideas on further research based on the problems of Cu2O as the photocatalysts are presented.

Contents
1 Introduction
2 Structural characteristics of Cu2O and its modification
2.1 Structural characteristics of Cu2O
2.2 Modification of Cu2O
3 Water splitting using Cu2O-based photocatalysts
3.1 Water splitting using Cu2O photocatalysts
3.2 Water plitting using modified Cu2O photocatalysts
4 Organic degeneration using Cu2O-based photoc-atalysts
4.1 Organic degeneration using Cu2O photocatalysts
4.2 Organic degeneration using modified Cu2O photocatalysts
5 Conclusion and prospects

中图分类号: 

()


[1] Fujishima A, Honda K. Nature, 1972, 238(5358): 37—38

[2] 盛国栋(Sheng G D), 李家星(Li J X), 王所伟(Wang S W), 王祥科(Wang X K). 化学进展(Progress in Chemistry), 2009, 21(12): 2492—2504

[3] Ni M, Leung M K H, Leung D Y C, Sumathy K. Renew. Sust. Energ. Rev., 2007, 11(3): 401—425

[4] Choi W. Catal. Surv. Asia, 2006, 10(1): 16—28

[5] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293(5528): 269—271

[6] Jang J S, Hwang D W, Lee J S. Catal. Today, 2007, 120(2): 174—181

[7] Omata T, Otsuka-Yao-Matsuo S. J. Photochem. Photobiol. A: Chem., 2003, 156(1/3): 243—248

[8] Maeda K, Teramura K, Lu D L, Takata T, Saito N, Inoue Y, Domen K. Nature, 2006, 440(7082): 295—295

[9] Zou Z G, Ye J H, Sayama K, Arakawa H. Nature, 2001, 414(6864): 625—627

[10] Yan S C, Li Z S, Zou Z G. Langmuir, 2009, 25(17): 10397—10401

[11] 田蒙奎(Tian M K), 上官文峰(Shangguan W F), 王世杰(Wang S J), 欧阳自远(Ouyang Z Y). 化学进展(Progress in Chemistry), 2007, 19(5): 680—688

[12] Rafea M A, Roushdy N. J. Phys. D: Appl. Phys., 2009, 42(1): ant. no. 015413

[13] Balamurugan B, Aruna I, Mehta B R, Shivaprasad S M. Phys. Rev. B, 2004, 69(16): art. no. 165419

[14] Baumeister P W. Phys. Rev., 1961, 121(2): 359—362

[15] Ghijsen J, Tjeng L H, van Elp J, Eskes H, Westerink J, Sawatzky G A, Czyzyk M T. Phys. Rev. B, 1988, 38(16): 11322—11330

[16] Ghijsen J, Tjeng L H, Eskes H, Sawatzky G A, Johnson R L. Phys. Rev. B, 1990, 42(4): 2268—2274

[17] Hara M, Kondo T, Komoda M, Ikeda S, Shinohara K, Tanaka A, Kondo J N, Domen K. Chem. Commun., 1998, (3): 357—358

[18] Roos A, Chibuye T, Karlsson B. Sol. Energy Mater., 1983, 7(4): 453—465

[19] Nolan M, Elliott S D. Phys. Chem. Chem. Phys., 2006, 8(45): 5350 — 5358

[20] Nolan M, Elliott S D. Chem. Mater., 2008, 20(17): 5522—5531

[21] Islam M M, Diawara B, Maurice V, Marcus P. J. Mol. Struct. Theochem., 2009, 903(1/3): 41—48

[22] Nolan M, Elliott S D. Thin Solid Films, 2008, 516(7): 1468—1472

[23] Das K, Sharma S N, Kumar M, De S K. J. Appl. Phys., 2010, 107(2): art. no. 024316

[24] Zhang W Q, Shi L, Tang K B, Dou S M. Eur. J. Inorg. Chem., 2010, (7): 1103—1109

[25] Zheng Z K, Huang B B, Wang Z Y, Guo M, Qin X Y, Zhang X Y, Wang P, Dai Y. Journal of Physical Chemistry C, 2009, 113(32): 14448—14453

[26] Nian J N, Hu C C, Teng H. Int. J. Hydrogen Energy, 2008, 33(12): 2897—2903

[27] Zhang Y, Deng B, Zhang T R, Gao D M, Xu A W. J. Phys. Chem. C, 2010, 114(11): 5073—5079

[28] Wood B J, Wise H, Yolles R S. J. Catal., 1969, 15(4): 355—362

[29] Bessekhouad Y, Robert D, Weber J V. Catal. Today, 2005, 101(3/4): 315—321

[30] Kakuta S, Abe T. Electrochem. Solid-State Lett., 2009, 12(3): 1—3

[31] Martinez-Ruiz A, Moreno M G, Takeuchi N. Solid State Sci., 2003, 5(2): 291—295

[32] Nakano Y, Saeki S, Morikawa T. Appl. Phys. Lett., 2009, 94(2): art. no. 022111

[33] Zhou B, Liu Z G, Wang H X, Yang Y Q, Su W H. Catal. Lett., 2009, 132(1/2): 75—80

[34] 靳治良(Jin Z L), 吕功煊(Lv G X). 分子催化(Journal of Molecular Catalysis), 2004, 18(4): 310—320

[35] Hou Y, Li X Y, Zhao Q D, Quan X, Chen G H. Appl. Phys. Lett., 2009, 95(9): art. no. 093108

[36] Hou Y, Li X, Zou X, Quan X, Chen G. Environ. Sci. Technol., 2008, 43(3): 858—863

[37] Zhang J Y, Zhu H L, Zheng S K, Pan F, Wang T M. ACS Appl. Mater. Interf., 2009, 1(10): 2111—2114

[38] Siripala W, Ivanovskaya A, Jaramillo T F, Baeck S H, McFarland E W. Sol. Energy Mater. Sol. Cells, 2003, 77(3): 229—237

[39] Huang L, Peng F, Ohuchi F S. Surf. Sci., 2009, 603(17): 2825—2834

[40] 陈金毅(Chen J Y), 彭梦(Peng M), 李念(Li N), 李宛怡(Li W Y), 海婷婷(Hai T T), 李薇(Li W). 五邑大学学报(Journal of Wuyi University), 2010, 24(1): 8—12

[41] 李念(Li N), 彭梦(Peng M), 李宛怡(Li W Y), 海婷婷(Hai T T), 李薇(Li W), 陈金毅(Chen J Y). 武汉工程大学学报(J. Wuhan Inst. Tech. ), 2010, 32(1): 87—89

[42] Hu C C, Nian J N, Teng H. Sol. Energy Mater. Sol. Cells, 2008, 92(9): 1071—1076

[43] Fernando C A N, De Silva L A A, Mehra R M, Takahashi K. Semicond. Sci. Technol., 2001, 16(6): 433—439

[44] Ikeda S, Takata T, Kondo T, Hitoki G, Hara M, Kondo J N, Domen K, Hosono H, Kawazoe H, Tanaka A. Chem. Commun., 1998, (20): 2185—2186

[45] Hara M, Hasei H, Yashima M, Ikeda S, Takata T, Kondo J N, Domen K. Appl. Catal. A: General, 2000, 190(1/2): 35—42

[46] Ohta T. Int. J. Hydrogen Energy, 2000, 25(10): 911—917

[47] Hara M, Komoda M, Hasei H, Yashima M, Ikeda S, Takata T, Kondo J N, Domen K. J. Phys. Chem. B, 2000, 104(4): 780—785

[48] Domen K. J. Phys. Chem. B, 2004, 108(49): 19078—19078

[49] De Jongh P E, Vanmaekelbergh D, Kelly J J. Chem. Commun., 1999, (12): 1069—1070

[50] De Jongh P E, Vanmaekelbergh D, Kelly J J. J. Electrochem. Soc., 2000, 147(2): 486—489

[51] Davide B, Paolo F, Alberto G, Valentina G, Chiara M, Tiziano M, Eugenio T. Chem. Sus. Chem., 2009, 2(3): 230—233

[52] 温福宇(Wen F Y), 杨金辉(Yang J H), 宗旭(Zong X), 马艺(Ma Y), 徐倩(Xu Q), 马保军(Ma B J), 李灿(Li C). 化学进展(Progress in Chemistry), 2009, 21(11): 2285—2302

[53] Schoppel H R, Gerischer H, Bunsenges B. Ber. Bunsenges. Phys. Chem., 1971, 75: 1237—1239

[54] Somasundaram S, Chenthamarakshan C R N, de Tacconi N R, Rajeshwar K. Int. J. Hydrogen Energy, 2007, 32(18): 4661—4669

[55] Wu Y Q, Lu G X, Li S B. Catal. Lett., 2009, 133(1/2): 97—105

[56] Kakuta S, Abe T. Solid State Sci., 2009, 11(8): 1465—1469

[57] 许宜铭(Xu Y M). 化学进展(Progress in Chemistry), 2009, 21(2/3): 524—533

[58] Palmisano G, Augugliaro V, Pagliaro M, Palmisano L. Chem. Commun., 2007, (33): 3425—3437

[59] Gaya U I, Abdullah A H. J. Photochem. Photobiol. C: Photochem. Rev., 2008, 9(1): 1—12

[60] Fujishima A, Zhang X, Tryk D A. Int. J. Hydrogen Energy, 2007, 32(14): 2664—2672

[61] Tang A D, Xiao Y, Jing O Y, Nie S. J. Alloys Compd., 2008, 457(1/2): 447—451

[62] 苏晓艳(Su X Y), 肖举强(Xiao J Q). 工业催化(Industrial Catalysis), 2009, 17(3): 71—74

[63] Xu H L, Wang W Z, Zhu W. J. Phys. Chem. B, 2006, 110(28): 13829—13834

[64] Yang H M, Ouyang J, Tang A D, Xiao Y, Li X W, Dong X D, Yu Y M. Mater. Res. Bull., 2006, 41(7): 1310—1318

[65] Huang L, Peng F, Yu H, Wang H J. Solid State Sci., 2009, 11(1): 129—138

[66] 梁宇宁(Liang Y N), 黄智(Huang Z), 覃思晗(Tan S H), 甘庆华(Gan Q H). 环境污染治理技术与设备(Techniques and Equipment for Environmental Pollution Control), 2003, 4(10): 36—39

[67] 刘洪禄(Liu H L), 张爱茜(Zhang A Q), 吴海锁(Wu H S). 环境化学(Environmental Chemistry), 2004, 23(5): 490—494

[68] 黄智(Huang Z), 张爱茜(Zhang A Q), 韩朔睽(Han S K). 环境化学(Environmental Chemistry), 2003, 22(3): 150—153

[69] 陈金毅(Chen J Y), 刘小玲(Liu X L), 李闾轮(Li L L), 李家麟(Li J L). 华中师范大学学报(Journal of Central China Normal University), 2002, 36(2): 200—203

[70] 刘小玲(Liu X L), 陈金毅(Chen J Y), 周文涛(Zhou W T), 李家麟(Li J L). 华中师范大学学报(Journal of Central China Normal University), 2002, 36(4): 475—477

[71] 何开棘(He K J), 丁慧(Ding H), 王开明(Wang K M). 化工进展(Chemical Industry and Engineering Progress), 2009, 28(6): 975—977

[72] 李晓勤(Li X Q), 方涛(Fang T), 罗永松(Luo Y S), 李家麟(Li J L). 化学通报(Chemistry), 2006, 69(4): 290—293

[73] Xu L, Jiang L P, Zhu J J, Nanotech., 2009, 20(4): art. no. 045605

[74] Cao Y B, Fan J M, Bai L Y, Yuan F L, Chen Y F. Cryst. Growth Des., 2010, 10(1): 232—236

[75] Han C, Li Z, Shen J. J. Hazard. Mater., 2009, 168(1): 215—219

[76] Huang L, Peng F, Wang H, Yu H, Li Z. Catal. Commun., 2009, 10(14): 1839—1843

[77] 周波(Zhou B), 刘志国(Liu Z G), 王红霞(Wang H X), 黄喜强(Huang X Q), 隋郁(Sui Y), 王先杰(Wang X J), 吕喆(Lv Z), 苏文辉(Su W H). 物理化学学报(Acta Physico-Chimica Sinica), 2009, 25(9): 1841—1846

[78] 周波(Zhou B), 刘志国(Liu Z G), 王红霞(Wang H X), 赵莉君(Zhao L J), 刘伟龙(Liu W L), 苏文辉(Su W H). 高等学校化学学报(Chemical Journal of Chinese Universities ), 2010, 31(1): 141—144

[79] 马玉燕(Ma Y Y), 魏守强(Wei S Q), 侯微(Hou W), 陈玉叶(Chen Y Y), 刘瑛(Liu Y). 电镀与精饰(Plating and Finishing), 2009, 31(12): 5—8

[80] Xu C, Cao L X, Su G, Liu W, Liu H, Yu Y Q, Qu X F. J. Hazard. Mater., 2010, 176(1/3): 807—813

[81] Du Y L, Zhang N, Wang C M. Catal. Commun., 2010, 11(7): 670—674

[82] 黄智(Huang Z), 李玉英(Li Y Y), 龙腾发(Long T F), 陈孟林(Chen M L), 何星存(He X C). 现代化工(Morden Chemical Industry), 2010, 30(1): 57—59

[83] 陈茂荣(Chen M R), 陈金毅(Chen J Y), 张文蓉(Zhang W R), 张静(Zhang J), 孙家寿(Sun J S). 武汉工程大学学报(J. Wuhan Inst. Tech. ), 2009, 31(12): 28—31

[84] 李东(Li D), 李登好(Li D H), 冯良东(Feng L D). 工业水处理(Industrial Water Treatment), 2010, 30(1): 53—56

[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[3] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[4] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[5] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[6] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[7] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[8] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[9] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[10] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[11] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[12] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[13] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[14] 牛小连, 刘柯君, 廖子明, 徐慧伦, 陈维毅, 黄棣. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355.
[15] 高耕, 张克宇, 王倩雯, 张利波, 崔丁方, 姚耀春. 金属草酸盐基负极材料——离子电池储能材料的新选择[J]. 化学进展, 2022, 34(2): 434-446.
阅读次数
全文


摘要

基于Cu2O的光催化研究