English
新闻公告
More
化学进展 2010, Vol. 22 Issue (12): 2282-2289 前一篇   后一篇

• 综述与评论 •

铋系半导体光催化材料

李二军, 陈浪, 章强, 李文华, 尹双凤   

  1. 湖南大学化学化工学院 长沙 410082
  • 出版日期:2010-12-24 发布日期:2010-11-04
  • 作者简介:e-mail:sfyin73@yahoo.com.cn
  • 基金资助:

    国家自然科学基金项目(No.20873038,J0830415)和教育部博士点基金(No.200805320001) 资助

Bismuth-Containing Semiconductor Photocatalysts

Li Erjun, Chen Lang, Zhang Qiang, Li Wenhua, Yin Shuangfeng   

  1. College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
  • Online:2010-12-24 Published:2010-11-04

近年来,铋系半导体材料因其在可见光辐照下对难降解有机物具有良好的催化作用而成为新型光催化材料的研究热点之一。本文综述了国内外铋系光催化剂的研究动态和主要成果。铋系光催化剂在可见光范围内有明显的吸收,具有较好的光催化活性。此外,大多数铋系光催化剂在反应过程中具有较高的稳定性。通过改进制备方法、掺杂负载、构建异质结等技术,可以有效提高铋系半导体材料的可见光吸收性能或抑制光生电子和空穴的复合,从而进一步提高其光催化性能。尽管铋系光催化剂由于其导带位置比氢的氧化还原电位低,但是通过设计合成新的能带结构可使其满足氧化和还原水的能带要求,从而实现铋系光催化剂在光解水制氢中的应用。最后,对铋系光催化剂未来的发展趋势进行了展望,并强调针对特殊用途和结合量化计算方法对开发新型铋系光催化剂的重要性。

Bismuth-containing semiconductor materials as a novel kind of photocatalysts have attracted much more attention due to their high catalytic activities towards the degradation of organic wastes under visible light irradiation. This paper summarizes the research achievements on Bi-containing semiconductor photocatalysts (e.g., bismuth oxide, bismuth titanate, bismuth tungstate, bismuth vanadate, bismuth oxyhalide, and so on). Among the reported Bi-containing photocatalysts, bismuth tungstate and bismuth vanadate are very attractive. Especially, it is shown that many Bi-containing semiconductor photocatalysts possesses significantly stronger optical absorption properties and higher photocatalytic activities than commercial TiO2 (P25) under visible light irradiation. Moreover, most of Bi-containing semiconductor photocatalysts have good stability. On the other hand, the optical absorption abilities of Bi-containing semiconductor photocatalysts can be obviously improved by chemical modification or constructing heterostructure. Additionally, although the position of conduction band of common Bi-containing photocatalysts is lower than the redox potential of hydrogen, many Bi-containing semiconductor materials can be used as water splitting catalysts by chemical modification. We tried to clarify the relationship between the structure and catalytic performance of the Bi-containing photocatalysts. Prospect on the development of Bi-containing semiconductor photocatalyts is also proposed. It is emphasized that for shortening the peroid of catalyst development, specail Bi-containing photocataylsts should be designed and fabricated by adopting theoretical calculation methods according to their potential applications.

Contents
1 Introduction
2 Bismuth oxide photocatalysts
3 Bi-containing bimetallic photocatalysts
3.1 Bismuth titanate photocatalyst
3.2 Bismuth tungstate photocatalyst
3.3 Bismuth vanadate photocatalyst
3.4 Other bismuth-containing bimetallic photocatalysts
4 Other bismuth-containing photocatalysts
5 Comparison on structure and performance of different Bi-containing photocatalysts
6 Conclusion and outlook

中图分类号: 

()


[1] Fujishima A, Honda K. Nature, 1972, 37: 238—2215

[2] Drache M, Roussel P, Wignacourt J P. Chem. Rev. 2007, 107: 80—96

[3] Wu X H, Qin W, Li L, Guo Y, Xie Z Y. Catal. Commun., 2009, 10: 600—604

[4] 吕伟(Lv W), 吴莉莉(Wu L L), 徐润春(Xu R C), 吴佑实(Wu Y S), 盖红德(Gai H D), 邹科(Zou K). 山东大学学报(Journal of Shangdong University, 2008, 38 (1): 109—112

[5] 刘超君(Liu C J), 徐悦华(Xu Y H), 李鑫(Li X). 世界有色金属(World Nonferrous Metals), 2009, (9): 64—65.

[6] Wu X H, Qin W, He W D. J. Mol. Catal. A., 2007, 261: 167—171

[7] Zhang L S, Wang W Z, Yang J, Chen Z G, Zhang W Q, Zhou L, Liu S W. Appl. Catal. A, 2006, 308: 105—110

[8] Zhou L, Wang W Z, Xu H L, Sun S M, Shang M. Chem. Eur. J., 2009, 15: 1776—1782

[9] Wang C H, Shao C L, Wang L J, Zhang L N, Li X H, Liu Y C. J. Colloid Interface Sci., 2009, 333: 242—248

[10] Li L, Yang Y W, Li G H, Zhang L D. Small, 2006, 2: 548—553

[11] Wang Y, Wen Y Y, Ding H M, Shan Y K. J. Mater. Sci., 2010, 45: 1385—1392

[12] Soitah N, Yang C H. Curr. Appl. Phys., 2010, 10: 724—728

[13] Lin X P, Xing J C, Wang W D, Shan Z C, Xu F F, Huang F Q. J. Phys. Chem. C, 2007, 111: 18288—18293

[14] Zhu X Q, Zhang J L, Chen F. Chemosphere, 2010, 78: 1350—1355

[15] Bian Z F, Ren J, Zhu J, Wang S H, Lu Y F, Li H X. Appl. Catal. B, 2009, 89: 577—582

[16] Zhou J K, Zou Z G, Ray K, Zhao X S. Ind. Eng. Chem. Res., 2007, 4: 745—749

[17] Xu S H, Shangguan W F, Yuan J, Shi J W, Chen M X. Mater. Sci. Eng. B, 2007, 137: 108—111

[18] 杨鑫(Yang X), 柳清菊(Liu Q J), 朱忠其(Zhu Z Q). 功能材料(Journal of Functional Materials), 2009, 40: 1577—1579

[19] Cheng H F, Huang B B, Dai Y, Qin X Y, Zhang X Y, Wang Z Y, Jiang M H. J. Solid State Chem., 2009, 182: 2274—2278

[20] Zhang H J, Chen G, Li X. Solid State Ionics, 2009, 180: 1599—1603

[21] Wang Z Z, Qi Y J, Qi H Y, Lu C J, Wang S M. J. Mater. Sci. : Mater. Electron., 2010, 21 (5): 523—528

[22] Sun S M, Wang W Z, Xu H L, Zhou L, Shang M, Zhang L. J. Phys. Chem. C, 2008, 112: 17835—1784

[23] Hou Y, Xue J Q, Huang Z M, Li T X, Ge Y J, Chu J H. Thin Solid Films, 2008, 517: 901—904

[24] Kudo A, Hijii S. Chem. Lett., 1999, 28: 1103—1104

[25] Tang J W, Zou Z G, Ye J H. Catal. Lett., 2004, 92: 53—56

[26] Xu J H, Wang W Z, Shang M, Sun S M, Ren J, Zhang L. Appl. Catal. B, 2010, 93: 227—232

[27] Shang M, Wang W Z, Ren J, Sun S M, Wang L, Zhang L. J. Mater. Chem., 2009, 19: 6213—6218

[28] Shang M, Wang W Z, Zhang L, Sun S M, Wang L, Zhou L. J. Phys. Chem. C, 2009, 113: 14727—14731

[29] Fu H B, Zhang L W, Yao W Q, Zhu Y F. Appl. Catal. B, 2006, 66: 100—110

[30] Ren J, Wang W Z, Sun S M, Zhang L, Chang J. Appl. Catal. B, 2009, 92: 50—55

[31] Shang M, Wang W Z, Zhou L, Sun S M, Yin W Z. J. Hazard. Mater., 2009, 172: 338—344

[32] Yu J Q, Zhang Y, Kudo A. J. Solid State Chem., 2009, 182: 223—228

[33] Li H B, Liu G C, Duan X C. Mater. Chem. Phys., 2009, 115: 9—13

[34] Zhang H M, Liu J B, Wang H. J. Nanopart Res., 2008, 10: 767—774

[35] Zhang X F, Chen S, Quan X, Zhao H M. Sep. Purif. Technol., 2009, 64: 309—313

[36] Zhang A P, Zhang J Z. J. Hazard. Mater., 2010, 173: 265—272

[37] Zhang X F, Quan X, Chen S, Zhang Y B. J. Hazard. Mater., 2010, 177: 914—917

[38] Long M C, Cai W M, Cai J, Zhou B X, Chai X Y, Wu Y H. J. Phys. Chem. B, 2006, 110: 20211—20216

[39] Lee D K, Cho I S, Lee S W, Bae S T, Noh J H, Kim D W, Hong K S. Mater. Chem. Phys., 2010, 119: 106—111

[40] Ke D N, Peng T Y, Ma L, Cai P, Dai K. Inorg. Chem., 2009, 48: 4685—4691

[41] Zhang X F, Zhang Y B, Quan X, Chen S. J. Hazard. Mater., 2009, 167: 911—914

[42] Dunkle S S, J. Helmich R S. Suslick K. J. Phys. Chem. C, 2009, 113: 11980—11983

[43] Sun S M, Wang W Z, Zhou L, Xu H L. Ind. Eng. Chem. Res., 2009, 48: 1735—1739

[44] Xu X W, Ni Q Y. Catal. Commun., 2010, 11: 359—363

[45] Dunkle S, Suslick K. J. Phys. Chem. C, 2009, 113: 10341—10345

[46] Sun S M, Wang W Z, Zhang L, Shang M. J. Phys. Chem. C, 2009, 113: 12826—12831

[47] Qin Z Z, Liu Z L, Liu Y B, Yang K D. Catal. Commun., 2009, 10: 1604—1608

[48] Chang X F, Huang J, Cheng C, Sha W, Li X, Ji G B, Deng S B, Yu G. J. Hazard. Mater., 2010, 173: 765—772

[49] Shan Z C, Xia Y J, Yang Y X, Ding H M, Huang F Q. Mater. Lett., 2009, 63: 75—77

[50] Martínez-de la Cruz A, Obregón Alfaro S. Solid State Sci., 2009, 11: 829—835

[51] Peng F, Chen C, Yu H, Wang H, Yang J. Mater. Chem. Phys., 2009, 116: 294—299

[52] Zhang S M, Zhang G K, Yu S J, Chen X G, Zhang X Y. J. Phys. Chem. C, 2009, 113: 20029—20035

[53] Chang X F, Huang J, Tan Q Y, Wang M, Ji G B, Deng S B, Yu G, Catal. Commun., 2009, 10: 1957—1961

[54] An H Z, Du Y, Wang T M, Wang C, Hao W C, Zhang J Y. Rare Met., 2008, 27: 243—250

[55] Wu S J, Wang C, Cui Y F, Wang T M, Huang B B, Zhang X Y, Qin X Y, Brault P. Mater. Lett., 2010, 64: 115—118

[56] Li L S, Cao R G, Wang Z J, Li J J, Qi L M. J. Phys. Chem. C, 2009, 113: 18075—18081

[57] Chen R G, Bi J H, Wu L, Wang W J, Li Z H, Fu X Z. Inorg. Chem., 2009, 48: 9072—9076

[58] Zheng Y, Duan F, Chen M Q, Xie Y. J. Mol. Catal. A, 2010, 317: 34—40

[59] Kudo A. Int. J. Hydrogen Energy, 2007, 32: 2673—2678

[60] Zou Z G, Ye J H, Arakawa H. Chem. Mater., 2001, 13: 1765—1769

[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[3] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[4] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[5] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[6] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[7] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[8] 陈琳, 陈捷锋, 刘一任, 刘玉玉, 凌海峰, 解令海. 有机张力半导体及其光电特性[J]. 化学进展, 2022, 34(8): 1772-1783.
[9] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[10] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[11] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[12] 李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 碳点的高性能化和功能化改性:方法、特性与展望[J]. 化学进展, 2022, 34(3): 499-518.
[13] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[14] 赵聪媛, 张静, 陈铮, 李建, 舒烈琳, 纪晓亮. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用[J]. 化学进展, 2022, 34(2): 397-410.
[15] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
阅读次数
全文


摘要

铋系半导体光催化材料