English
新闻公告
More
化学进展 2010, Vol. 22 Issue (12): 2255-2267   后一篇

• 综述与评论 •

蓝色磷光有机发光材料

陶然, 乔娟, 段炼, 邱勇   

  1. 清华大学化学系 有机光电子与分子工程教育部重点实验室 北京 100084
  • 出版日期:2010-12-24 发布日期:2010-11-04
  • 作者简介:e-mail:qjuan@mail.tsinghua.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.51073089)资助

Blue Phosphorescence Materials for Organic Light-Emitting Diodes

Tao Ran, Qiao Juan, Duan Lian, Qiu Yong   

  1. Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
  • Online:2010-12-24 Published:2010-11-04

有机发光二极管在信息显示和固体照明领域具有广阔的应用前景,二十多年来得到了广泛关注,取得了很大进展。但显示和照明必需的蓝色发光材料,特别是蓝色磷光材料是目前有机发光材料研究领域的瓶颈,其稳定性和效率亟待提高。本文总结了近年来蓝色磷光有机发光材料的研究进展,系统介绍了蓝色磷光染料和主体材料这两大类材料的分子设计思想和发展动态,以及它们在有机发光二极管中的应用,并对蓝色磷光有机发光材料未来的研究方向进行了展望。

Organic light-emitting diodes (OLEDs) have drawn tremendous research interest from both academia and industry over the last two decades because of their unique features and potential applications in flat-panel displays and solid-state lighting. Blue light-emitting materials, especially blue phosphorescent materials are indispensible for full-color displays and white OLED lighting. Compared with green and red light-emitting materials and devices, the blue counterparts behave relatively inferior performance in terms of color purity, luminous efficiency and durability. This review summarizes the recent development of blue phosphorescent materials and their performance in the OLED devices, focusing on the design strategies and device performance of blue phosphorescent dopants especially transition-metal iridium complexes and host materials. Moreover, we attempt to discuss the research trends and perspective of blue phosphorescent materials and devices.

Contents
1 Introduction
2 Metal complexes as dopants for blue phosphorescent OLEDs
2.1 Achieve blue shift
2.2 Improve the luminous efficiency
2.3 Other types of metal complexes
3 Host materials for blue phosphorescent OLEDs
4 Conclusion and perspective

中图分类号: 

()


[1] Tang C W, Vanslyke S A. Appl. Phys. Lett., 1987, 51: 913—915

[2] Burroughes J H, Bradley D C, Brown A R, Marks R N, Mackay K, Friend R H, Burn P L, Holmes A B. Nature, 1990, 347: 539—541

[3] Gu G, Shen Z, Burrows P E, Forrest S R. Adv. Mater., 1997, 9: 725—728

[4] 黄春辉(Huang C H), 李福友(Li F Y), 黄维(Huang W). 有机发光材料与器件导论. 上海: 复旦大学出版社, 2005

[5] 陈金鑫(Chen J X), 陈锦地(Chen J D), 吴忠帜(Wu Z Z). 白光OLED照明. 台湾: 五南图书出版公司, 2009

[6] Neyts K A. J. Opt. Soc. Am. A, 1998, 15: 962.

[7] Riel H, Karg S, Beierlein T, Ries W, Neyts K. J. Appl. Phys., 2003, 94: 5290—5296

[8] Shiang J J, Duggal A R. J. Appl. Phys., 2004, 95: 2880—2888

[9] Tyan Y S, Shore J D, Farruggia G, Cushman T R. Proc. of SID 2005, 2005: 142—146

[10] Peng H J, Ho Y L, Yu X J. J. Appl. Phys., 2004, 96: 1649—1654.

[11] Mikami A, Nishita Y, Lida Y. Proc. of SID 2006, 2006: 1376—1379

[12] Lamansky S, Djurovich P, Murphy D, Lee H E, Adachi C, Burrows P E, Forrest S R, Thompson M E. J. Am. Chem. Soc., 2001, 123: 4304—4312

[13] Baldo M A, O'Brien D F, You Y, Shoustikov A, Sibley S, Thompson M E, Forrest S R. Nature, 1998, 395: 151—154

[14] Ma Y, Zhang H, Shen J, Che C. Synthetic Metals, 1998, 94: 245—248

[15] Baldo M A, Lamansky S, Burrows P E, Thompson M E. Appl. Phys. Lett., 1999, 75: 4—6

[16] Chi Y, Chou P T. Chem. Soc. Rev., 2010, 39: 638—655

[17] Ren X, Li J, Holmes R J, Djurovich P I, Forrest S R, Thompson M E. Chem. Mater., 2004, 16: 4743—4747

[18] Sajoto T, Djurovich P I, Tamayo A, Yousufuddin M, Bau R, Thompson M E, Holmes R J, Forrest S R. Inorg. Chem., 2005, 44: 7992—8003

[19] D’Andrade B W, Weaver M S, Mackenzie P B, Yamamoto H, Giebink N C, Forrest S R, Thompson M E. SID ’08 DIGEST, 2008: 712—715

[20] Holmes R J, Forrest S R, Tung Y T, Kwong R C, Brown J J, Garon S, Thompson M E. Appl. Phys. Lett., 2003, 82: 2422—2424

[21] Adachi C, Kwong R C, Djurovich P I, Adamovich V, Baldo M A, Thompson M E, Forrest S R. Appl. Phys. Lett., 2001, 79: 2082—2084

[22] Thompson M E, Li J, Tamayo A, Sajoto T, Djurovich P, Forrest S R, Holmes R J, Brown J, Brooks J. SID ’05 DIGEST, 2005: 1058—1061

[23] Tokito S, Lijima T, Tsuzuki T, Sato F. Appl. Phys. Lett., 2003, 83: 2459—2461

[24] Xu M L, Zhou R, Wang G Y, Xiao Q, Du W S, Che G B. Inorganica Chimica Acta, 2008, 361: 2407—2412

[25] Lee S C, Kim Y S. Mol. Cryst. Liq. Cryst., 2008, 491: 209—216

[26] Byun Y, Jeon W S, Lee T W, Lyu Y Y, Chang S, Kwon O Y, Han E, Kim H Y, Kim M, Lee H J, Das R R. Dalton. Trans., 2008: 4732—4741

[27] Lee S C, Kim Y S. Mol. Cryst. Liq. Cryst., 2009, 505: 325—334

[28] Ragni R, Orselli E, Kottas G S, Omar O H, Babudri F, Adriana P, Naso F, Farinola G M, De Cola L. Chem. Eur. J. 2009, 15: 136—148

[29] Lee S J, Park K M, Kang Y, Yang K. Inorg. Chem., 2009, 48: 1030—1037

[30] Holmes R J, D’Andrade B W, Forrest S R, Ren X, Li J, Thompson M E. Appl. Phys. Lett., 2003, 83: 3818—3820

[31] Yeh S J, Wu W C, Chen C T, Song Y H, Chi Y, Ho M H, Hsu S F, Chen C H. Adv. Mater., 2005, 17: 285—289

[32] Li J, Djurovich P I, Alleyne B D, Yousufuddin M, Ho N N, Thomas J C, Peters J C, Bau R, Thompson M E. Inorg. Chem., 2005, 44: 1713—1727

[33] Endo A, Suzuki T, Yoshihara T, Tobita S, Yahiro M, Adachi C. Chem. Phys. Lett., 2008, 480: 155—157

[34] Hung J Y, Chi Y, Pai I H, Yu Y C, Lee G H, Chou P T, Wong K T, Chen C C, Wu C C. Dalton Trans., 2009: 6472—6475

[35] Chi Y, Hung J Y, Lin C H, Chou P T, Pai I H, Hsu C W. US 20090209756, 2009

[36] Nazeeruddin M K, Berner D, Rivier S, Zuppiroli L, Graetzel M. J. Am. Chem. Soc., 2003, 125: 8790—8797

[37] Lee C L, Das R R, Kim J J. Chem. Mater., 2004, 16: 4642—4646

[38] Chin C S, Eum M S, Kim S Y, Kim C, Kang S K. Eur. J. Inorg. Chem., 2007, 372—375

[39] Chou P T, Chi Y. Chem. Eur. J., 2007, 13: 380—395

[40] Shen X, Yang H, Hu X H, Xu Y, Wang F L, Chen S, Zhu D R. Inorg. Chem. Commun., 2009, 12: 785—788

[41] Mak C S K, Hayer A, Pascu S I, Watkins S E, Holmes A B, Kohler A, Friend R H. Chem. Commun., 2005: 4708—4710

[42] Laskar I R, Hsu S F, Chen T M. Polyhedron, 2005, 24: 189—200

[43] Kim S H, Jang J, Lee S J, Lee J Y. Thin Solid Films, 2008, 517: 722—726

[44] Yu H J, Park K, Kim S H. Mol. Cryst. Liq. Cryst., 2009, 499: 348—359

[45] Tamayo A B, Alleyne B D, Djurovich P I, Lamansky S, Tsyba I, Ho N N, Bau R, Thompson M E. J. Am. Chem. Soc., 2003, 125: 7377—7387

[46] Lo S C, Shipley C P, Bera R N, Harding R E, Cowley A R, Burn P L, Samuel I D W. Chem. Mater., 2006, 18: 5119—5129

[47] Tsai Y Y, Barone M S, Tamayo A, Thompson M E. US 2005258742, 2005

[48] Holmes R J, Forrest S R, Sajoto T, Djurovich P I, Tamayo A, Thompson M E, Brooks J, Tung Y J, D’Andrade B W, Weaver M S, Kwong R C, Brown J J. Appl. Phys. Lett., 2005, 87: 243507(3)

[49] Song Y H, Chiu Y C, Chi Y, Cheng Y M, Lai C H, Chou P T, Wong K T, Tsai M H, Wu C C. Chem. Eur. J., 2008, 14: 5423—5434

[50] Paulose B, Rayabarapu D, Duan J, Cheng C. Adv. Mater., 2004, 16: 2003—2007

[51] Ramamurthy V, Caspar J V, Eaton D F, Kuo E W, Corbin D R. J. Am. Chem. Soc., 1992, 114: 3882—3892

[52] Schildknecht C, Ginev G, Kammoun A, Riedl T, Kowalsky W, Johannes H, Lennartz C, Kahle K, Egen M, Gebner T, Bold M, Nord S, Erk P. Proc. of SPIE., 2005, 5937: 59370E(9)

[53] You Y M, Park S Y. J. Am. Chem. Soc., 2005, 127: 12438—12439

[54] You Y, An C G, Lee D S, Kim J J, Park S Y. J. Mater. Chem., 2006, 16: 4706—4713

[55] Zhao Q, Li L, Li F, Yu M, Liu Z, Yi T, Huang C. Chem. Commun., 2008: 3998—4000

[56] Lin C, Ma B, Knowles D B, Brooks J, Kwong R. US 2006008670, 2006

[57] Otsu S, Nishizeki M, Katoh E, Oshiyama T. US 2006280966, 2006

[58] Knowles D B, Lin C, Mackenzie P B, Walters R W, Beers S A, Brown C S, Yeager W H. US 2007190359, 2007

[59] Knowles D B, Lin C, Mackenzie P B, Tsai J Y, Walters R W, Beers S A, Brown C S, Yeager W H, Barron E. US 2008297033, 2008

[60] D’Andrade B, Mackenzie P B, Weaver M S, Brown J J. WO 2009061926, 2009

[61] Chew S L, Lee C S, Lee S T, Wang P F, He J, Li Wen, Pan J, Zhang X H, Kwong H L. Appl. Phys. Lett., 2006, 88: 093510(3)

[62] Lo S C, Harding R E, Shipley C P, Stevenson S G, Burn P L, Samuel I D W. J. Am. Chem. Soc., 2009, 131: 16681—16688

[63] Dedeian K, Shi J M, Shepherd N, Forsythe E, Morton D C. Inorg. Chem., 2005, 44: 4445—4447

[64] Yang C H, Li S W, Chi Y, Cheng Y M, Yeh Y S, Chou P T, Lee G H, Wang C H, Shu C F. Inorg. Chem., 2005, 44: 7770—7780

[65] Yeh Y S, Cheng Y M, Chou P T, Lee G H, Yang C H, Chi Y, Shu C F, Wang C H. ChemPhysChem, 2006, 7: 2294—2297

[66] Baranoff E, Suarez S, Bugnon P, Barolo C, Buscaino R, Scopelliti R, Zuppiroli L, Graetzel M, Nazeeruddin M K. Inorg. Chem., 2008, 47: 6575—6577

[67] Oshiyama T, Nishizeki M, Sekine N. WO 2006082742, 2006

[68] He L, Duan L, Qiao J, Wang R J, Wei P, Wang L D, Qiu Y. Adv. Funct. Mater., 2008, 18: 2123—2131

[69] Tamayo A, Garon S, Sajoto T, Djurovich P I, Tsyba I M, Bau R, Thompson M E. Inorg. Chem., 2005, 44: 8723—8732

[70] Nazeeruddin M K, Wegh R T, Zhou Z, Klein C, Wang Q, DeAngelis F, Fantacci S, Grtzel M. Inorg. Chem., 2006, 45: 9245—9250

[71] Bolink H J, Cappelli L, Cornoado E, Parham A, Stssel P. Chem. Mater., 2006, 18: 2778—2780

[72] Yu M X, Zhao Q, Shi L X, Li F Y, Zhou Z G, Yang H, Yi T, Huang C H. Chem. Commun., 2008: 2115—2117

[73] Zhao Q, Yu M X, Shi L X, Liu S J, Li C Y, Shi M, Zhou Z G, Huang C H, Li F Y. Organometallics, 2010, 29: 1085—1091

[74] Zhao Q, Cao T Y, Li F Y, Li X H, Jing H, Yi T, Huang C H. Organometallics, 2007, 26: 2077—2081

[75] Zhao Q, Liu S J, Shi M, Li F Y, Jing H, Yi T, Huang C H. Organometallics, 2007, 26: 5922—5930

[76] Zhao Q, Li F Y, Liu S J, Yu M X, Liu Z Q, Yi T, Huang C H. Inorg. Chem., 2008, 47: 9256—9264

[77] Zhao Q, Li F Y, Huang C H. Chem. Soc. Rev., 2010, 39: 3007—3030

[78] You Y M, Kim S H, Jung H K, Park S Y. Macromolecules, 2006, 39: 349—356

[79] Huang W S, Wu Y H, Hsu Y C, Lin H C, Lin J T. Polymer, 2009, 50: 5945—5958

[80] Kim H, Lyu Y Y, Choi K, Zentel R, Lee S H, Char K. Macromol. Rapid Comm., 2009, 30: 1232—1237

[81] Yang X H, Wang Z X, Madakuni S, Li J, Jabbour G E. Adv. Mater., 2008, 20: 2405—2411

[82] Tung Y L, Wu P C, Liu C S, Chi Y, Yu J K, Hu Y H, Chou P T, Peng S M, Lee G H, Tao Y, Carty A, Shu C F, Wu F. Organometallics, 2004, 23: 3745—3748

[83] Walters R, Tsai J, Mackenzie P B, Thompson M E. US 2005260449, 2005

[84] Ma Y G, Zhou X M, Shen J C, Chao H Y, Che C M. Appl. Phys. Lett., 1999, 74: 1361—1363

[85] Zhang L M, Li B, Su Z M. J. Phys. Chem. C, 2009, 113: 13968—13973

[86] Wei F X, Fang L, Huang Y. Inorganica Chimica Acta, 2010, 363: 2600—2605

[87] Yeh S J, Chen C T, Song Y H, Chi Y, Ho M H. J. SID, 2005, 13: 857—862

[88] Nam E J, Kim J H, Kim B O, Kim S M, Park N G, Kim Y S, Kim Y K, Ha Y. Bull. Chem. Soc. Jpn. 2004, 77: 751—755

[89] Chang C F, Cheng Y M, Chi Y, Chiu Y C, Lin C C, Lee G H, Chou P T, Chen C C, Chang C H, Wu C C. Angew. Chem. Int. Ed., 2008, 47: 4542—4545

[90] Yang C C, Cheng Y M, Chi Y, Hsu C J, Fang F C, Wong K T, Chou P T, Chang C H, Tsai M H, Wu C C. Angew. Chem. Int. Ed., 2007, 46: 2418—2421

[91] Lo S C, Bera R N, Harding R E, Burn P L, Samuel D W. Adv. Funct. Mater., 2008, 18: 3080—3090

[92] Shih P I, Chien C H, Chuang C Y, Shu C F, Yang C H, Chen J H, Chi Y. J. Mater. Chem., 2007, 17: 1692—1698

[93] Chiu Y C, Hung J Y, Chi Y, Chen C C, Chang C H, Wu C C, Cheng Y M, Yu Y C, Lee G H, Chou P T. Adv. Mater., 2008, 20: 1—5

[94] Lin J J, Liao W S, Huang H J, Wu F I, Cheng C H. Adv. Funct. Mater., 2008, 18: 485—491

[95] Chiu Y C, Chi Y, Hung J Y, Cheng Y M, Yu Y C, Chung M W, Lee G H, Chou P T, Chen C C, Wu C C, Hsieh H Y. Appl. Mater. Inter. 2009, 1: 433—442

[96] Chen L Q, You H, Yang C L, Ma D G, Qin J G. Chem. Commun., 2007: 1352—1354

[97] Shizuo T, Toshiki L, Yoshiyuki S, Hiroshi K, Toshimitsu T, Fumio S. Appl. Phys. Lett., 2003, 83: 569—571

[98] Lei G T, Wang L D, Duan L, Qiu Y. Synthetic Metals, 2004, 144: 249—252

[99] Whang D R, You Y M, Kim S H, Jeong W I, Park Y S, Kim J J, Park S Y. Appl. Phys. Lett., 2007, 91: 233501(3)

[100] He J, Liu H M, Dai Y F, Ou X M, Wang J, Tao S L, Zhang X H, Wang P F, Ma D G. J. Phys. Chem. C, 2009, 113: 6761—6767

[101] Lee J, Song K, Lee S J, Chu H Y. Appl. Phys. Lett., 2008, 92: 203305(3)

[102] Tsai M H, Lin H W, Su H C, Ke T H, Wu C C, Fang F C, Liao Y L, Wong K T, Wu C I. Adv. Mater., 2006, 18: 1216—1220

[103] Li W, Qiao J, Duan L, Wang L D, Qiu Y. Tetrahedron, 2007, 63: 10161—10168

[104] Hou L D, Duan L, Qiao J, Wang L D, Qiu Y. Appl. Phys. Lett., 2008, 92: 263301(3)

[105] Jiang W, Duan L, Qiao J, Zhang D Q, Dong G F, Wang L D, Qiu Y. J. Mater. Chem., 2010, 20: 6131—6137

[106] Fan C, Chen Y H, Jiang Z Q, Yang C L, Zhong C, Qin J G, Ma D G. J. Mater. Chem., 2010, 20: 3232—3237

[107] Cai X Y, Padmaperuma A B, Sapochak L S, Vecchi P A, Burrows P E. Appl. Phys. Lett., 2008, 92: 083308(3)

[108] Sapochak L S, Padmaperuma A B, Cai X Y, Male J L, Burrows P E. J. Phys. Chem. C, 2008, 112: 7989—7996

[109] Hsu F M, Chien C H, Shu C F, Lai C H, Hsieh C C, Wang K W, Chou P T. Adv. Funct. Mater., 2009, 19: 2834—2843

[110] Su S J, Sasabe H, Takeda T, Kido J. Chem. Mater., 2008, 20: 1691—1693

[111] Su S J, Gonmori E, Sasabe H, Kido J. Adv. Mater., 2008, 20: 4189—4194

[112] Jeon S O, Yook K S, Joo C W, Lee J Y. Adv. Funct. Mater., 2009, 19: 3644—3649

[113] Jeon S O, Yook K S, Joo C W, Lee J Y. Adv. Mater., 2010, 22: 1872—1876

[114] Wu Z L, Xiong Y, Zou J H, Wang L, Liu J C, Chen Q L, Yang W, Peng J B, Cao Y. Adv. Mater., 2008, 20: 2359—2364

[115] Scholz S, Meerheim R, Walzer K, Leo K. Proc. of SPIE., 2008, 6999: 69991B(10)

[116] Meerheim R, Scholz S, Olthof S, Schwart G, Reineke S, Watzer K, Leo K. J. Appl. Phys., 2008, 104: art. no. 014510(8)

[1] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[2] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[3] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[4] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[5] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[6] 职怡缤, 于兰, 李欢欢, 陶冶, 陈润锋, 黄维. 芳基硅磷光主体材料在有机电致发光器件中的应用[J]. 化学进展, 2022, 34(5): 1109-1123.
[7] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[8] 张婷婷, 洪兴枝, 高慧, 任颖, 贾建峰, 武海顺. 基于铜金属有机配合物的热活化延迟荧光材料[J]. 化学进展, 2022, 34(2): 411-433.
[9] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[10] 唐向春, 陈家祥, 刘利娜, 廖世军. 具有三维特殊形貌/纳米结构的Pt基电催化剂[J]. 化学进展, 2021, 33(7): 1238-1248.
[11] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[12] 颜高杰, 吴琼, 谈玲华. 富氮唑类金属配合物的设计合成及应用[J]. 化学进展, 2021, 33(4): 689-712.
[13] 杨琪, 邓南平, 程博闻, 康卫民. 锂电池中的凝胶聚合物电解质[J]. 化学进展, 2021, 33(12): 2270-2282.
[14] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[15] 郑超, 戴一仲, 陈铃峰, 李明光, 陈润锋, 黄维. 敏化型电致发光器件原理与技术[J]. 化学进展, 2020, 32(9): 1352-1367.
阅读次数
全文


摘要

蓝色磷光有机发光材料