English
新闻公告
More
化学进展 2010, Vol. 22 Issue (11): 2248-2253 前一篇   

• 综述与评论 •

柔性染料敏化太阳能电池*

兰章**  吴季怀   

  1. (华侨大学材料物理化学研究所 泉州362021)
  • 收稿日期:2010-02-24 修回日期:2010-05-21 出版日期:2010-11-24 发布日期:2010-10-20
  • 通讯作者: 兰章 E-mail:lanzhang@hqu.edu.cn
  • 基金资助:

    国家高技术发展计划;国家自然科学基金;华侨大学科研启动基金

Recent Progress in Flexible Dye-Sensitized Solar Cells

Lan Zhang** Wu Jihuai   

  1. (Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou 362021, China)
  • Received:2010-02-24 Revised:2010-05-21 Online:2010-11-24 Published:2010-10-20
  • Contact: Lan Zhang E-mail:lanzhang@hqu.edu.cn

本文介绍了染料敏化太阳能电池的工作原理,对其重要研究方向——柔性染料敏化太阳能电池的关键组成部分:光阳极、对电极和电解质等的国内外研究进展进行了评述,分析当前研究过程中存在的问题,并提出提高柔性染料敏化太阳能电池光电转换效率和长期稳定性的对策,对其未来的发展进行了展望.

Although the highest energy conversion efficiency about 11 % of dye-sensitized solar cell (DSSC) based on the transparent oxide conductive glass (TCO) has been obtained, the heavy, rigid, and expensive TCO substrate need to be substituted with flexible materials such as plastic or metal substrates in order to both decrease the production costs and enlarge the application range. The key problem with plastic substrates is their low temperature tolerance, so some novel fabricating methods need to be developed to enhance the quality of flexible photo electrodes. Whereas with metal substrates, the above problem is not existed due to the high temperature tolerance of them, while a few kinds of metals such as stainless steel, titanium are suitable for substrates owing to the corrosion of iodine-containing electrolyte typically used in DSSC. The key problem for fabricating flexible DSSC with metal substrate photo electrodes is to fabricate the high transparent counter electrodes and use some kinds of low light absorption electrolytes. Taking these accounts in mind, researchers have obtained some significant progresses. Another important research challenge on flexible DSSC is to improve the long-term stability of the cells to suit for consumer applications. Some kinds of quasi or all solid state electrolytes have been used in TCO based DSSC and show excellent long-term stability, if they can be transferred to the flexible DSSC successfully, the problem can be solved.

Contents
1 Introduction
2 Flexible photo electrode
3 Flexible counter electrode
4 Electrolyte
5 Conclusions and outlook

中图分类号: 

()

[1] O'Regan B, Grtzel M. Nature, 1991, 353: 737—740
[2] Grtzel M. Inorg. Chem., 2005, 44: 6841—6851
[3] Ito S, Murakami T, Liska P, Grtzel C, Nazeeruddin M K, Grtzel M. Thin Solid Films, 2008, 516: 4613—4619
[4] Nazeeruddin M K, Kay A, Rodicio I, Humphry B R, Muller E, Grtzel M. J. Am. Chem. Soc., 1993, 115: 6382—6390
[5] Toivola M, Halme J, Miettunen K, Aitola K, Lund P D. Int. J. Energy Res., 2009, 33: 1145—1160
[6] Zhang D, Yoshida T, Minoura H. Adv. Mater., 2003, 15: 814—817
[7] Pan H, Ko S H, Misra N, Grigoropoulos C P. Appl. Phys. Lett., 2009, 94: art. no. 0711171
[8] Uchida S, Tomiha M, Takizawa H, Kawaraya M. J. Photo chem. Photobiol. A: Chem., 2004, 164: 93—96
[9] Yamaguchi T, Tobe N, Matsumoto D, Arakawa H. Chem. Commun., 2007, 45: 4767—4769
[10] Zhang D, Yoshida T, Furuta K, Minoura H. J. Photochem. Photobiol. A: Chem., 2004, 164: 159—166
[11] DüRR M, Schmid A, Obermaier M, Rosselli S, Yasuda A, Nelles G. Nat. Mater., 2005, 4: 607—611
[12] Murakami T N, Kijitori Y, Kawashima N, Miyasaka T. Chem. Lett., 2003, 32: 1076—1077
[13] Zhang D, Yoshida T, Oekermann T, Furuta K, Minoura H. Adv. Funct. Mater., 2006, 16: 1228—1234
[14] Xiao Y, Wu J, Li Q, Xie G, Yue G, Ye H, Lan Z, Huang M, Lin J. Chinese Sci. Bull., 2010, 53: 1—6
[15] Kijitori Y, Ikegami M, Miyasaka T. Chem. Lett., 2007, 36: 190—191
[16] Miettunen K, Halme J, Toivola M, Lund P. J. Phys. Chem. C, 2008, 112: 4011—4017
[17] Ito S, Ha N L, Rothenberger G, Liska P, Zakeeruddin S M, Grtzel M. Chem. Commun., 2006, 38: 4004—4006
[18] Zhu K, Neale N R, Miedaner A, Frank A J. Nano Lett., 2007, 7: 69—74
[19] Fan X, Wang F, Chu Z, Chen L, Zhang C, Zou D. Appl. Phys. Lett., 2007, 90: art. no. 073501
[20] Liu Z, Subramania V, Misra M. J. Phys. Chem. C, 2009, 113: 14028—14033
[21] Weintraub B, Wei Y, Wang Z L. Angew. Chem. Int. Ed., 2009, 48: 1—6
[22] Fang X, Ma T, Guan G, Akiyama M. J. Electroanal. Chem., 2004, 570: 257—263
[23] Fang X, Ma T, Akiyama M, Guan G, Tsunematsu S, Abe E. Thin Solid Films, 2005, 472: 242—245
[24] Ikegami M, Miyoshi K, Miyasaka T. Appl. Phys. Lett., 2007, 90: art. no. 1531221
[25] Lindstrōm H, Holmberg A, Magnusson E, Malmqvist L, Hagfeldt A. J. Photochem. Photobiol. A: Chem., 2001, 145: 107—112
[26] Murakami T N, Grtzel M. Inorg. Chim. Acta, 2008, 361: 572—580
[27] Chen J, Li K, Luo Y, Guo X, Li D, Deng M, Huang S, Meng Q. Carbon, 2009, 47: 2704—2708
[28] Suzuki K, Yamamoto M, Kumagai M, Yanagida S. Chem. Lett., 2003, 32: 28—29
[29] Xu Y, Bai H, Lu G, Li C, Shi G. J. Am. Chem. Soc., 2008, 130: 5856—5857
[30] Li Q, Wu J, Tang Q, Lan Z, Li P, Lin J, Fan L. Electro. Chem. Commun., 2008, 10: 1299—1302
[31] Wu J, Li Q, Fan L, Lan Z, Li P, Lin J, Hao S. J. Power Sources, 2008, 181: 172—176
[32] Bay L, West K, Jensen B W, Jacobsen T. Sol. Energy Mater. Sol. Cells, 2006, 90: 341—351
[33] Chen J, Wei H, Ho K. Sol. Energy Mater. Sol. Cells, 2007, 91: 1472—1477
[34] Wang M, Anghel A M, Marsan B, Zakeeruddin S M, Grtzel M. J. Am. Chem. Soc., 2009, 131: 15976—15977
[35] Wu J, Lan Z, Hao S, Lin J, Huang M. Pure Appl. Chem., 2008, 80: 2241—2258
[36] Wu J, Hao S, Lan Z, Lin J, Huang M, Huang Y, Fan L, Yin S, Sato T. Adv. Funct. Mater., 2007, 17: 2645—2652
[37] Wu J, Lan Z, Lin J, Huang M, Hao S, Sato T, Yin S. Adv. Mater., 2007, 19: 4006 —4011
[38] Wu J, Hao S, Lan Z, Lin J, Huang M, Huang Y, Li P, Yin S, Sato T. J. Am. Chem. Soc., 2008, 130: 11568—11569

[1] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[4] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[5] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[6] 卢继洋, 汪田田, 李湘湘, 邬福明, 杨辉, 胡文平. 电喷印刷柔性传感器[J]. 化学进展, 2022, 34(9): 1982-1995.
[7] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[8] 宫悦, 程一竹, 胡银春. 高分子导电水凝胶的制备及在柔性可穿戴电子设备中的应用[J]. 化学进展, 2022, 34(3): 616-629.
[9] 赵静, 王子娅, 莫黎昕, 孟祥有, 李路海, 彭争春. 微结构化柔性压力传感器的性能增强机制、实现方法与应用优势[J]. 化学进展, 2022, 34(10): 2202-2221.
[10] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[11] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[12] 郑明心, 曾敏, 陈曦, 袁金颖. 光响应形变液晶聚合物的结构与应用[J]. 化学进展, 2021, 33(6): 914-925.
[13] 李文涛, 钟海, 麦耀华. 锂二次电池中的原位聚合电解质[J]. 化学进展, 2021, 33(6): 988-997.
[14] 范路洁, 陈莉, 何崟, 刘皓. 基于3D导电材料的柔性应力/应变传感器[J]. 化学进展, 2021, 33(5): 767-778.
[15] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
阅读次数
全文


摘要

柔性染料敏化太阳能电池*