English
新闻公告
More
化学进展 2010, Vol. 22 Issue (11): 2238-2247 前一篇   后一篇

• 综述与评论 •

多孔材料的胶囊化储氢*

李静1  吴尔冬1*  耿长建2  杜晓明3   

  1. (1. 中国科学院金属所沈阳材料科学国家联合实验室,辽宁沈阳 110016 2. 东北大学材料物理化学研究所,辽宁沈阳 110005 3. 沈阳理工大学材料科学与工程学院,辽宁沈阳 110168)
  • 收稿日期:2010-03-22 修回日期:2010-04-15 出版日期:2010-11-24 发布日期:2010-10-20
  • 通讯作者: 李静 E-mail:jingli@imr.ac.cn

Hydrogen Storage by Encapsulation on Porous Materials

Li Jing1  Wu Erdong1* Geng Changjian Xiaoming Du3   

  1. (1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2. Department of Material Science and Engineering, Institute of Science Research, Northeastern University, Shenyang 110005, China 3. Institute of Material Science and Engineering, Shenyang Ligong University, Shenyang 110168, China)
  • Received:2010-03-22 Revised:2010-04-15 Online:2010-11-24 Published:2010-10-20
  • Contact: Li Jing E-mail:jingli@imr.ac.cn

氢的存储是氢能利用的关键,利用多孔材料的胶囊化作用存储氢气具有独特优点。本文简要阐述了胶囊化形成的原因,重点介绍了胶囊化储氢所用的几种多孔材料及其特点,包括沸石分子筛、金属配位化合物、玻璃微球和球碳及其衍生物。总结了近年来国内外学者利用多孔材料胶囊化作用储氢的研究进展,并从操作条件、对材料的要求、需要克服的能垒等方面分析了胶囊化储氢与物理吸附储氢的差异,进而对今后胶囊化储氢的应用与发展做出了展望。

Hydrogen storage is a key to the utility of hydrogen as a renewable energy source. The encapsulation of hydrogen on porous materials has its special advantages. In this review, the fundamentals of the encapsulation are briefly introduced. The relevant porous materials of zeolites, metal coordination compounds, hollow glass microspheres, fullerenes and their derivative, and their characteristics on encapsulation of hydrogen are addressed in details. Recent progresses on the studies of the encapsulation of hydrogen on porous materials are summarized. The differences between the encapsulation and physical adsorption of hydrogen on porous materials are analyzed based on their required operation conditions, material specifications and energy barriers. Finally, the perspectives of the applications and further studies on the encapsulation of hydrogen are discussed.

Contents
1 Introduction
2 Fundamentals of encapsulation
3 Porous materials for hydrogen encapsulation
3.1 Zeolites
3.2 Metal coordination compounds
3.3 Hollow glass microspheres
3.4 Fullerenes and their derivatives
4 Conclusions

()

[1] 梁治齐(Liang Z Q), 劳国强(Lao G Q). 微胶囊技术及其应用(Microcapsule Technology and Application), 北京: 中国轻工业出版社(Beijing: China Light Industry Press), 1999, 4
[2] Saha D, Deng S G. Langmuir, 2009, 25: 12550—12560
[3] Acatrinei A I, Hartl M A, Eckert J, Falcao E H L, Chertkov G, Daemen L L. J. Phys. Chem. C, 2009, 113: 15634—15638
[4] Vitillo J G, Ricchiardi G, Spoto G, Zecchina A. Phys. Chem. Chem. Phys., 2005, 7: 3948—3954
[5] 杜晓明(Du X M), 李静(Li J), 吴尔冬(Wu E D). 化学进展(Progress in Chemistry), 2010, 22: 248—254
[6] Eklund G, von Krusenstierna O. Int. J. Hydrogen Energy, 1983, 8: 463—470
[7] 王宜辰(Wang Y C). 烟台师范学院学报(Yantai Teachers University Journal), 1993, 9: 76—78
[8] Rodriguez-Diaz J M, Santos-Martin M T. Chemometr. Intell. Lab. Sys., 2009, 95: 199—208
[9] 徐如人(Xu R R), 庞文琴(Pang W Q). 分子筛与多孔材料化学(Chemistry of Zeolites and Porous Materials), 北京: 科学出版社(Beijing: Scientific Press), 2004. 3
[10] Sesny W J, Shaffer L H. US 331669, 1967
[11] Barrer R M, Vaughan D E W. Trans. Faraday Soc., 1967, 63: 2275—2289
[12] Barrer R M, Vaughan D E W. Surf. Sci., 1969, 14: 77—87
[13] Barrer R M, Vaughan D E W. J. Phys. Chem. Solids, 1971, 32: 731—745
[14] Fraenkel D, Shabtai J. J. Am. Chem. Soc., 1977, 14: 7074—7076
[15] Fraenkel D. J. Chem. Soc., Faraday Trans., 1981, 77: 2029—2039
[16] Fraenkel D, Levy A. J. Chem. Soc. Faraday Trans., 1988, 84: 1817—1834
[17] Angelos M E, Steven L S, Carroll O B. J. Catal., 1990, 123: 456—462
[18] Efstathiou A M, Borgstedt E V R, Suib S L, Bennett C O. J. Catal. 1992, 135: 135—146
[19] Weitkamp J, Fritz M, Ernst S. Int. J. Hydrogen Energy, 1995, 20: 967—970
[20] Krishnan V V, Suib S L, Corbin D R, Schwarz S, Jones G E. Catalysis Today, 1996, 31: 199—205
[21] Song M K, Kim J S, No K T. Appl. Surf. Sci., 2007, 253: 5696—5700
[22] Wester F, Schnick W Z. Anor. Allg. Chem., 1996, 622: 1281—1287
[23] Weitkamp J, Ernst S, Cubero F, Wester F, Schnick W. Adv. Mater., 1997, 9: 247—248
[24] Rosi N L, Eckert J, Eddaoudi M, Vodak D T, Kim J, OKeeffe M, Yaghi O M. Science, 2003, 300: 1127—1129
[25] Teitel R J. US 4302217, 1981
[26] 张占文(Zhang Z W), 唐永建(Tang Y J), 王朝阳(Wang C Y), 李波(Li B), 漆小波(Qi X B). 化工学报(Journey of Chemistry Industry and Engine), 2006, 57: 1677—1681
[27] Schmitt M L, Shelby J E, Hall M M. J. Non-Crystalline Solids, 2006, 352: 626—631
[28] Kohli D K, Khardekar R K, Singh R, Gupta P K. Int. J. Hydrogen Energy, 2008, 33: 417—422
[29] Rambach G D, Hendricks C. Proc. 1996 USDOE Hydrogen Program Review Meeting. Miami: National Renewable Energy Laboratory, 1996, 765
[30] Rapp D B, Shelby J E. J. Non-Crystal. Solids, 2004, 349: 254—259
[31] Snyder M J, Wachtel P B, Hall M M, Shelby J E. Phys. Chem. Glasses -European J. Glass Sci. Tech. B, 2009, 50: 113—118
[32] 杨英惠(Yang Y H)摘译. 现代材料动态(Information of Advanced Materials)2009, 8: 4
[33] Kean L L, Hossein K, Zahira Y, Wan R W D. Chem. Eng. Technol., 2010, 33: 213—226
[34] 张占文(Zhang Z W), 唐永建(Tang Y J), 李波(Li B), 王朝阳(Wang C Y), 漆小波(Qi X B), 陈素芬(Chen S F), 刘一杨(Liu Y Y), 翟世明(Zhai S M). 硅酸盐通报(Bulletin of the Chinese Ceramic Society), 2006, 25: 172—175
[35] 李波(Li B), 陈素芬(Chen S F), 漆小波(Qi X B), 张占文(Zhang Z W), 刘一扬(Liu Y Y). 强激光与粒子束(High Power Laser and Particle Beams), 2009, 21: 1489—1491
[36] Qiu L Q, Fu Y B, Tang Y J. Sci. China, 2002, 45: 371—375
[37] 麦松威(Mai S W), 周公度(Zhou G D), 李伟基(Li W J). 高等无机结构化学(High Inorganic Structure Chemistry), 北京大学出版社, 香港中文大学出版社(Beijing University Press and Hongkong Chinese University Press), 2001, 378
[38] Rubin Y, Jarrosson T, Wang G W, Bartberger M D, Houk K N, Schick G, Saunders M, Cross R J. Angew. Chem. Int. Ed., 2001, 40: 1543—1546
[39] Georgios C V, Manolis M R, Michael O. Chem. Soc. Rev., 2010, 39: 817—844
[40] Murata Y, Murata M, Komatsu K. J. Am. Chem. Soc., 2003, 125: 7152—7153
[41] Türker L, Erko.J.Mol. Struct. (Theochem), 2003, 638: 37—40
[42] Dolgonos G. J Mol. Struct. (Theochem), 2005, 723: 239—241
[43] Ren Y X, Ng T Y, Liew K M. Carbon, 2006, 44: 397—406
[44] Murata Y, Maeda S, Murata M, Komatsu K. J. Am. Chem. Soc., 2008, 130: 6702—6703
[45] Ganji M D, Physica E. 2009, 41: 1433—1438
[46] Delgado J L, Espildora E, Liedtke M, Sperlich A, Rauh D, Baumann A, Deibel C, Dyakonov V, Martin N. Chemistry A European Journal, 2009, 15: 13474—13482
[47] Krtschmer W, Lamb L D, Fostiropoulos K, Donald R H. Nature, l990, 347: 354—358
[48] Koi N, Oku T. Solid State Commun., 2004, 131: 121—124
[49] Koi N, Oku T. Sci. Tech. Adv. Mater., 2004, 5: 625—628
[50] Song L C, Su F H, Hu Q M, Grigiotti E, Zanello P. Eur. J. Inorg. Chem., 2006, 2: 422—429
[51] 张军平(Zhang J P), 王乃兴(Wang N X), 汪武卫(Wang W W), 赵嘉(Zhao J), 王桂霞(Wang G X), 唐石(Tang S). 有机化学(Chinese Journey of Organic Chemistry), 2006, 26: 922—927
[52] Wernberger B, Lamari F D, Veziroglu A, Beyaz S, Beauverger M. Int. J. Hydrogen Energy, 2009, 34: 3191—3196
[53] Fraenkel D, Ittah B, Levy M. J. Chem. Soc., Faraday Trans., 1988, 84: 1835—1845
[54] Yucel H, Ruthven D M. J. Chem. Soc., Faraday Trans., 1980, 76: 60—70

[1] 王杰, 冯亚青, 张宝. MOF-COF框架杂化材料[J]. 化学进展, 2022, 34(6): 1308-1320.
[2] 汤波, 王微, 罗爱芹. 新型多孔材料用作色谱手性固定相[J]. 化学进展, 2022, 34(2): 328-341.
[3] 施剑林, 华子乐. 无机纳米与多孔材料合成中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1060-1075.
[4] 李健, 张恩爽, 刘圆圆, 黄红岩, 苏岳锋, 李文静. 超低密度气凝胶的制备及应用[J]. 化学进展, 2020, 32(6): 713-726.
[5] 赵苏艳, 刘畅, 徐浩, 杨晓博. 二维共价有机框架光催化剂[J]. 化学进展, 2020, 32(2/3): 274-285.
[6] 贾强, 宋洪伟, 唐盛, 王静, 彭银仙. 功能化多孔材料的制备及其在特异性识别分离中的应用[J]. 化学进展, 2019, 31(8): 1148-1158.
[7] 刘杰, 曾渊, 张俊, 张海军, 刘江昊. 三维石墨烯基材料的制备、结构与性能[J]. 化学进展, 2019, 31(5): 667-680.
[8] 喻志超, 汤淳, 姚丽, 高庆, 徐祖顺, 杨婷婷. 聚合物基模板制备中空介孔材料[J]. 化学进展, 2018, 30(12): 1899-1907.
[9] 姚臻, 王祖飞, 于云飞, 杨文龙, 曹堃*. 聚双环戊二烯基多孔材料的制备及性能[J]. 化学进展, 2017, 29(5): 524-529.
[10] 姜信欣, 赵成军, 钟春菊, 李建平*. MOF构筑的电化学传感器及应用[J]. 化学进展, 2017, 29(10): 1206-1214.
[11] 余响林, 陈小姣, 张碧玉, 饶聪, 何源, 黎俊波. 基于有序介孔材料的荧光探针及其应用[J]. 化学进展, 2016, 28(6): 896-907.
[12] 喻娜, 丁慧敏, 汪成. 有机分子笼的合成及应用[J]. 化学进展, 2016, 28(12): 1721-1731.
[13] 冯燕燕, 金明, 万德成. 跨越微观-宏观组装的桥梁:浓乳液聚合技术的应用[J]. 化学进展, 2016, 28(11): 1658-1663.
[14] 王方丽, 洪敏, 许丽丹, 耿志荣. 基于纳米材料的表面辅助激光解吸离子化质谱研究[J]. 化学进展, 2015, 27(5): 571-584.
[15] 吴新妹, 张秋根, 朱爱梅, 刘庆林. 自具微孔高分子气体分离膜的结构调控与改性研究[J]. 化学进展, 2014, 26(07): 1214-1222.
阅读次数
全文


摘要

多孔材料的胶囊化储氢*