English
新闻公告
More
化学进展 2010, Vol. 22 Issue (11): 2224-2231 前一篇   后一篇

• 综述与评论 •

凝胶介质中仿生矿化过程的研究*

史莹 耿家青 杨冬**   

  1. (天津大学化工学院 系统生物工程教育部重点实验室 天津 300072)
  • 收稿日期:2010-03-12 修回日期:2010-05-04 出版日期:2010-11-24 发布日期:2010-10-20
  • 通讯作者: 杨冬 E-mail:dongyang@tju.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973);天津市自然科学基金

Bio-inspired Mineralization Process in Gel Media

Shi Ying   Geng Jiaqing   Yang Dong   

  1. (Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China)
  • Received:2010-03-12 Revised:2010-05-04 Online:2010-11-24 Published:2010-10-20
  • Contact: Yang Dong E-mail:dongyang@tju.edu.cn

本文综述了凝胶介质中仿生矿化过程的研究进展。仿生矿化是当前化学、生物学和材料科学的研究前沿和热点。近年来,越来越多的生物学证据表明:生物体中的蛋白质和多糖等生物大分子,往往通过超分子组装形成凝胶状基质网络,进而对生物矿化过程施加影响。因此,凝胶介质中的仿生矿化研究对深入了解生物矿化机理,以及从理论上指导先进功能材料的设计和合成具有重要意义。迄今为止,研究人员已经对天然和合成高分子凝胶、超分子水凝胶和无机凝胶等多种凝胶介质中的仿生矿化过程进行了研究。结果表明:凝胶介质主要通过其三维网络结构限制反应离子在其内部的扩散速率,并掺杂到无机矿物的晶体结构中,从而影响生成晶体的形貌和构造。而且在有机基质(如水溶性有机高分子和自组装单层等)的协同作用下,凝胶介质中的仿生矿化过程也呈现出与水溶液中不同的特点。此外,本文还介绍了当前对凝胶介质中矿物形貌的调控和矿化机理的几种不同观点,并对该领域未来的研究和应用进行了展望。

This review introduces the research progress of the bio-inspired mineralization process in the gel medium. Bio-inspired mineralization is the leading edge and hotspot of the research in the fields including chemistry, biology and materials science at present. Recently, more and more efforts prove that the biomolecules, such as the protein and polysaccharide, usually form the gelatinous reticular matrix in the organism, which can influence the biomineralization process. Therefore, the research of bio-inspired mineralization processes in the gel medium is important to understand the biomineralization mechanism, and guide the design and synthesis of advanced functional materials. Until now, the bio-inspired mineralization process in the gel media including the natural and man-made macromolecule gel, supermolecule hydrogel, and inorganic gel, and so on, has been investigated. The current experimental results show that the gel media control the morphology of inorganic crystals by primarily inhibiting the diffusion of reactant ions in their network structure and doping into the formed crystals. Moreover, the bio-inspired mineralization in the gel medium cooperating with organic matrices, such as water-soluble additives and self-assembled mono-layers (SAMs), exhibits different characters from that in aqueous solution. In addition, this review also introduces several opinions about the bio-inspired mineralization mechanism of inorganic crystals formed in the gel medium. At last, the development trend of the research and application in this field is expected.

Contents
1 Introduction
2 Bio-inspired mineralization in gel media
2.1 Natural macromolecule gel
2.2 Man-made macromolecule gel
2.3 Supermolecule hydrogel
2.4 Inorganic gel
3 Effect of organic matrices on bio-inspired mineralization in gel media
3.1 Water-soluble additives
3.2 Self-assembled mono-layers, SAMs
4 Mechanism of bio-inspired mineralization in gel medium
5 Conclusions and outlook

中图分类号: 

()

[1] Kunz W, Kellermeier M. Science, 2009, 323(5912): 344—345
[2] Meldrum F C, Clfen H. Chem. Rev., 2008, 108(11): 4332—4432
[3] Sommerdijk N A J M, de With G. Chem. Rev., 2008, 108(11): 4499—4550
[4] Cusack M, Freer A. Chem. Rev., 2008, 108(11): 4433—4454
[5] Gower L B. Chem. Rev., 2008, 108(11): 4551—4627
[6] Xu A W, Ma Y R, Clfen H. J. Mater. Chem., 2007, 17(5): 415—449
[7] 欧阳健明(Ouyang J M). 生物矿化的基质调控及其仿生应用(Regulations of Biomineralization by Matrix and Applications of Biomimetic). 北京:化学工业出版社(Beijing:Chemical Industry Press), 2006, 188—205
[8] 冯庆玲(Feng Q L), 侯文涛(Hou W T), 清华大学学报(自然科学版)(Journal of Tsinghua University (Natural Science Edition)), 2006, 46(12): 2019—2023
[9] Addadi L, Joester D, Nudelman F, Weiner S. Chem. Eur. J., 2006, 12(4): 980—987
[10] Collino S, Evans J S. Biomacromolecules, 2008, 9(7): 1909—1918
[11] Chellgren B W, Creamer T P. Biochemistry, 2004, 43(19): 5864—5869
[12] 顾雪蓉(Gu X R), 朱育平(Zhu Y P). 凝胶化学(Gel Chemistry). 北京:化学工业出版社(Beijing: Chemical Industry Press), 2005, 22
[13] Yang D, Qi L M, Ma J M. Chem. Commun., 2003, 10: 1180—1181
[14] Li H Y, Estroff L A. CrystEngComm., 2007, 9: 1153—1155
[15] Oaki Y, Hayashi S, Imai H. Chem. Commum., 2007, 27: 2841—2843
[16] Watanabe J, Akashi M. Biomacromolecules, 2006, 7(11): 3008—3011
[17] Watanabe J, Akashi M. Cryst. Growth Des., 2008, 8(2): 478—482
[18] 沈钟(Shen Z), 赵振国(Zhao Z G), 王果庭(Wang G T). 胶体与表面化学(Colloid and Surface Chemistry). 北京:化学工业出版社(Beijing: Chemical Industry Press), 2004, 146
[19] Grassmann O, Müller G, Lbmann P. Chem, Mater., 2002, 14(11): 4530—4535
[20] Huang Y X, Buder J, Cardoso-Gil R, Prots Y, Carrillo-Cabrera W, Simon P, Kniep R. Angew. Chem. Int. Ed., 2008, 47(43): 8280—8284
[21] Ethirajan A, Ziener U, Chuvilin A, Kaiser U, Clfen H, Landfester K. Adv. Funct. Mater., 2008, 18(15): 2221—2227
[22] Imai H, Tatara S, Furuichi K, Oaki Y. Chem. Commun., 2003, (15): 1952—1953
[23] Grassmann O, Neder R B, Putnis A, Lbmann P. Am. Mineral., 2003, 88(4): 647—652
[24] Grassmann O, Lbmann P. Chem. Eur. J., 2003, 9(6): 1310—1316
[25] Grassmann O, Lbmann P. Biomaterials, 2004, 25(2): 277—282
[26] Helbig U. J. Cryst. Growth., 2008, 310(11): 2863—2870
[27] Zhao J, Li Y J, Cheng G X. Chin. Sci. Bull., 2007, 52(13): 1796—1801
[28] Kuang M, Wang D Y, Gao M Y, Hartmann J, Mhwald H. Chem. Mater., 2005, 17(3): 656—660
[29] Estroff L A, Addadi L, Weiner S, Hamilton A D. Org. Biomol. Chem., 2004, 2: 137—141
[30] Schnepp Z A C, Gonzalez-McQuire R, Mann S. Adv. Mater., 2006, 18(14): 1869—1872
[31] Shi N E, Yin G, Han M, Xu Z. Colloids Surf. B: Biointerfaces., 2008, 66(1): 84—89
[32] Imai H, Terada T, Yamabi S. Chem. Commun., 2003, (4): 484—485
[33] Imai H, Terada T, Miura T, Yamabi S. J. Cryst. Growth, 2002, 244(2): 200—205
[34] Terada T, Yamabi S, Imai H. J. Cryst. Growth, 2003, 253(1/4): 435—444
[35] 欧阳健明(Ouyang J M), 李祥平(Li X P). 物理化学学报(Acta Phys. -Chim. Sin. ), 2004, 20(2): 169—172
[36] Deng S P, Ouyang J M. Chin. J. Chem., 2007, 25: 1379—1384
[37] Sugawara A, Ishii T, Kato T. Angew. Chem. Int. Ed., 2003, 42(43): 5299—5303
[38] Falini G, Fermani S, Gazzano M, Ripamonti A. Chem. Eur. J., 1998, 4(6): 1048—1052
[39] Falini G. Int. J. Inorg. Mater., 2000, 2(5): 455—461
[40] Falini G, Fermani S, Gazzano M, Ripamonti A. J. Chem. Soc. Dalton. Trans., 2000, 3: 3983—3987
[41] Jiménez-Corona A E, Pérez-Torres A, Mas-Oliva J, Moreno A. Cryst. Growth Des., 2008, 8(4): 1335—1339
[42] Li H Y, Estroff L A. J. Am. Chem. Soc., 2007, 129(17): 5480—5483
[43] Oaki Y, Imai H. Cryst. Growth. Des., 2003, 3(5): 711—716
[44] Imai H, Oaki Y, Kotachi A. Bull. Chem. Soc. Jpn., 2006, 79(12): 1834—1851
[45] Li H Y, Estroff L A. Adv. Mater., 2009, 21(4): 470—473
[46] Li H, Xin H L, Muller D A, Estroff L A. Science, 2009, 326: 1244—1247
[47] Oaki Y, Kotachi A, Miura T, Imai H. Adv. Funct. Mater., 2006, 16(12): 1633—1639
[48] Zhou L, OBrien P. Small, 2008, 4(10): 1566—1574
[49] Sumper M, Brunner E. ChemBioChem, 2008, 9(8): 1187—1194

[1] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[2] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[3] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[4] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[5] 柳凤琦, 姜勇刚, 彭飞, 冯军宗, 李良军, 冯坚. 超轻纳米纤维气凝胶的制备及其应用[J]. 化学进展, 2022, 34(6): 1384-1401.
[6] 王丽媛, 张朦, 王静, 袁玲, 任林, 高庆宇. 自振荡凝胶的仿生运动[J]. 化学进展, 2022, 34(4): 824-836.
[7] 王金凤, 李爱森, 李振. 室温磷光凝胶研究进展[J]. 化学进展, 2022, 34(3): 487-498.
[8] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[9] 宫悦, 程一竹, 胡银春. 高分子导电水凝胶的制备及在柔性可穿戴电子设备中的应用[J]. 化学进展, 2022, 34(3): 616-629.
[10] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[11] 曹新华, 韩晴晴, 高爱萍, 王桂霞. 气态酸和有机胺响应的超分子凝胶[J]. 化学进展, 2021, 33(9): 1538-1549.
[12] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[13] 李文涛, 钟海, 麦耀华. 锂二次电池中的原位聚合电解质[J]. 化学进展, 2021, 33(6): 988-997.
[14] 李立清, 吴盼旺, 马杰. 双网络凝胶吸附剂的构建及其去除水中污染物的应用[J]. 化学进展, 2021, 33(6): 1010-1025.
[15] 杨宇州, 李政, 黄艳凤, 巩继贤, 乔长晟, 张健飞. MOF基水凝胶材料的制备及其应用[J]. 化学进展, 2021, 33(5): 726-739.
阅读次数
全文


摘要

凝胶介质中仿生矿化过程的研究*