English
新闻公告
More
化学进展 2010, Vol. 22 Issue (11): 2207-2214 前一篇   后一篇

• 综述与评论 •

超滤质谱技术在药物小分子与生物靶分子相互作用研究中的应用*

周慧1,2  宋凤瑞1   刘志强1**   刘淑莹1   

  1. (1. 中国科学院长春应用化学研究所  长春 13022;中国科学院研究生院  北京  100039)
  • 收稿日期:2010-02-28 修回日期:2010-04-09 出版日期:2010-11-24 发布日期:2010-10-20
  • 通讯作者: 刘志强 E-mail:liuzq@ciac.jl.cn
  • 基金资助:

    国家科技部创新方法研究专项;国家杰出青年基金;吉林省科技发展计划

Applications of Ultrafiltration Mass Spectrometry in the Studies on  interaction between medicine and biological target

Zhou Hui1,2  Song Fengrui1  Liu Zhiqiang1**  Liu Shuying1   

  1. (1.Changchun Institute of Appilied Chemistry,Chinese Academy of Sciences,Changchun 130022,China ;2.Gradute University of the,Chinese Academy of Sciences,Beijing 100039,China)
  • Received:2010-02-28 Revised:2010-04-09 Online:2010-11-24 Published:2010-10-20
  • Contact: Liu Zhiqiang E-mail:liuzq@ciac.jl.cn

药物小分子与生物体内靶分子之间的相互作用,是药物发挥其药理活性的重要途径之一。因此,高通量地筛选出能够与生物靶分子相互作用且具有生物活性的药物小分子,对于新药开发研究具有重要的理论意义和实际应用价值。超滤质谱技术是超滤装置与质谱技术结合后形成的一种新的分析方法,它能够在液相条件下快速地识别并鉴定出与生物靶分子结合的药物小分子配体。与其它分析方法相比,超滤质谱技术具有快速、灵敏、高通量的特点,因而被广泛应用于研究药物小分子和生物靶分子相互作用。本文综述了超滤质谱技术的原理、特点和实验操作中的一些关键问题。重点介绍了超滤质谱技术在药物小分子与生物靶分子相互作用研究中的应用进展,并对其未来的发展方向进行了展望。

The interaction between medicine and biological target in vivo is one of the most important factors that determine the therapeutic activity of the medicine. Screening medicine that can bind with biological target and show well pharmacological effects will promotes the development of new medicine discovery significantly. therefore, several approaches have been developed to screening of combinatorial libraries and natural product extracts for biologically active compounds. Ultrafiltration mass spectrometry is a combination of ultrafiltration equipment and mass spectrometry, which is a valuable approach for the selection, structure analysis, and identification of low molecular weight compounds that interact with biological target in the solution phase. It has been developed as a powerful tool for the determination of the interaction between medicine and biological target because of its high speed, high sensitivity, and its high throughput screening ability. In this paper, the fundamental principles on which the ultrafiltration mass spectrometry is based, and the experimental details that must be considered during the operation of ultrafiltration equipment are introduced. The developments and applications of the ultrafiltration mass spectrometry in the studies on the interaction between medicine and biological target are reviewed. In addition, the developmental trend of the ultrafiltration mass spectrometry are also discussed.

Contents
1 Introduction
2 The fundamental principles of ultrafiltration mass spectrometry
3 The useful discussion of experimental details that must be considered
4 The recent applications of ultrafiltration mass spectrometry
5 Conclusions and outlook

中图分类号: 

()

[1] 卢继新(Lu J X),李惠芬(Li H F),蔡乐(Cai L),李娟(Li J),张贵珠(Zhang G Z). 分析科学学报(Journal of Analytical Science), 2007, 23(5): 601—606
[2] Boger D L, Tse W C. Bioorg. Med. Chem., 2001, 9: 2511—2518
[3] Ouameur A A, Marty R, Tajmir-Riahi H A. Biopolymers, 2005, 77: 129—136
[4] Kanakis C D, Tarantilis P A, Polissiou M G, Diamantoglou S, Tajmir-Riahi H A. J. Biomol. Struct. Dyn., 2005, 22: 719—724
[5] 纪竹生(Ji Z S),刘买利(Liu M L),胡继明(Hu J M). 分析化学(Chinese Journal of Analytical Chemistry), 2004, 32(11): 1532—1537
[6] Wang S F, Peng T Z, Yang C F. Biophys. Chem., 2003, 104: 239—248
[7] Pan Y J, Zhang H, Chen Y Z. Chin. Sci. Bull.,2003,48(7):630—633
[8] Zhang H, Gu Q, Liang X L, Pan Y J. Anal. Biochem., 2004, 329: 173—179
[9] Nikolic D, Habibi-Goudarzi S, Corley D G, Gafner S, Pezzuto J M, van Breemen R B. Anal. Chem., 2000, 72: 3853—3859
[10] Chen C J, Chen S, Woodbury C P, Venton D L. Anal. Biochem., 1998, 261: 164—182
[11] Gu C G, Nikolic D, Lai J, Xu X Y, van Breemen R B. Comb. Chem. High Throughput Screening, 1999, 2: 353—359
[12] Van Breemen R B, Woodbury C P, Venton D L. Screening Molecular Diversity Using Pulsed Ultrafiltration Mass Spectrometry. in Mass Spectrometry of Biological Materials (eds. Larsen B S, McEwen C N). New York: Marcel Dekker,1998. 99—113
[13] Van Breemen R B, Nikolic D, Bolton J L. Drug. Metabo. Dispos., 1998, 26: 85—90
[14] Nikolic D, Fan P W, Bolton J L, van Breemen R B. Comb. Chem. High Throughput Screening, 1999, 2: 165—175
[15] 周大炜(Zhou D W),李乐道(Li L D),李发美(Li F M). 色谱(Chinese Journal of Chromatography), 2004, 22(2): 116—120
[16] 吴增茹(Wu Z R),徐筱杰(Xu X J). 分析化学(Chinese Journal of Analytical Chemistry), 2002, 30(1): 101—106
[17] Shin Y G, van Breemen R B. Biopharm. Drug Dispos., 2001, 22: 353—372
[18] Geoghegan K F, Kelly M A. Biopharm. Mass Spectrom. Rev., 2005, 24: 347—366
[19] Hofstadler S A, Sannes-Lowery K A. Nat. Rev. Drug Discov., 2006, 5: 585—595
[20] Calvo E, Camafeita E, Diaz J F, Lopez J A. Curr. Proteomics, 2008, 5: 20—34
[21] Van Breemen R B, Huang C R, Nikolic D, Woodbury C P, Zhao Y Z, Venton D L. Anal. Chem., 1997, 69: 2159—2164
[22] Zhao Y Z, van Breemen R B, Nikolic D, Huang C R, Woodbury C P, Schilling A, Venton D L. J. Med. Chem., 1997, 40: 4006—4012
[23] Nikolic D, van Breemen R B. Comb. Chem. High Throughput Screening, 1998, 1: 47—55
[24] Woodbury C P, Venton D L. J. Chromatogr. B, 1999, 725: 113—137
[25] Johnson B M, Nikolic D, van Breemen R B. Mass Spectrom. Rev., 2002, 21: 76—86
[26] Siegel M M. Curr. Top. Med. Chem., 2002, 2: 13—33
[27] Wieboldt R, Zweigenbaum J, Henion J. Anal. Chem., 1997, 69: 1683—1691
[28] Hannewald P, Maunit B, Muller J F. Anal. Chem., 2006, 78: 4390—4397
[29] Chen Y, Yazdanpanah M, Wang X Y, Hoffman B R, Diamandis E P, Wong P Y. Clin. Bio., 2010, 43: 490—496
[30] Jiang Y, Wang P C, Locascio L E, Lee C S. Anal. Chem., 2001, 73: 2048—2053
[31] Beverly M B, West P, Julian R K. Comb. Chem. High Throughput Screening, 2002, 5: 65—73
[32] Nikolic D, Habibi-Goudarzi S, Corley D G, Gafner S, Pezzuto J M, van Breemen R B. Anal. Chem., 2000, 72: 3853—3859
[33] Liu J H, Burdette J E, Xu H Y, Gu C G, van Breemen R B, Bhat K P L, Booth N, Constantinou A I, Pezzuto J M, Fong H H S, Farnsworth N R, Bolton J L. J. Agric. Food Chem., 2001, 49: 2472—2479
[34] Onorato J, Henion J D. Anal. Chem., 2001, 73: 4704—4710
[35] Liu J H, Carr S, Rinaldi K, Chandler W. Environ. Toxicol. Pharmacol., 2005, 20: 269—278
[36] Menguy T, Chenevois S, Guillain F, Maire M L, Falson P, Champeil P. Anal. Biochem., 1998, 264: 141—148
[37] Sun Y K, Gu C G, Liu X M, Liang W Z, Yao P, Bolton J L, van Breemen R B. J. Am. Soc. Mass. Spectrom., 2005, 16: 271—279
[38] Liu D T, Guo J, Luo Y, Broderick D J, Schimerlik M I, Pezzuto J M, van Breemen R B. Anal. Chem., 2007, 79: 9398—9402
[39] 李惠琳 (Li H L). 中国科学院长春应用化学研究所硕士论文 (Master Dissertation of Changchun Institute of Applied Chemistry, Chinese Academy of Sciences), 2008
[40] Li H L, Song F R, Xing J P, Tsao R, Liu Z Q, Liu S Y. J. Am. Soc. Mass Spectrom., 2009, 20: 1496—1503
[41] Zhou J L, Qian Z M, Luo Y D, Tang D, Chen H, Yi L, Li P. Biomed. Chromatogr., 2008, 22: 1164—1172
[42] 王兆伏 (Wang Z F). 中国科学院长春应用化学研究所博士论文 (Doctoral Dissertation of Changchun Institute of Applied Chemistry, Chinese Academy of Sciences), 2009
[43] Johnson B M, Bolton J L, van Breemen R B. Chem. Res. Toxicol., 2001, 14: 1546—1551
[44] Shin Y G, Bolton J L, van Breemen R B. Comb. Chem. High Throughput Screening, 2002, 5: 59—64

[1] 杨林颜, 郭宇鹏, 李正甲, 岑洁, 姚楠, 李小年. 钴基费托合成催化剂的表界面性质调控[J]. 化学进展, 2022, 34(10): 2254-2266.
[2] 潘志君, 庄巍, 王鸿飞. 凝聚态化学研究中的动力学振动光谱理论与技术[J]. 化学进展, 2020, 32(8): 1203-1218.
[3] 王慧娟, 刘育. 磺化冠醚的分子键合与组装[J]. 化学进展, 2020, 32(11): 1651-1664.
[4] 王晓娟, 刘真真, 陈奇, 王小强, 黄方. 石墨烯材料与蛋白质的相互作用[J]. 化学进展, 2019, 31(2/3): 236-244.
[5] 刘耀华, 刘育. 基于偶氮功能基的光控超分子组装[J]. 化学进展, 2019, 31(11): 1528-1539.
[6] 闫吉军, 康传清*, 高连勋. 阴离子-萘四酸双酰亚胺相互作用及其应用[J]. 化学进展, 2018, 30(7): 902-912.
[7] 王雪, 陈中慧, 卿光焱*. 基于磷脂膜的界面相互作用研究[J]. 化学进展, 2018, 30(7): 888-901.
[8] 闫博, 周宏伟*, 解璞, 金洗郎, 马爱洁*, 陈卫星. 化学振荡反应调控的动态可逆智能体系[J]. 化学进展, 2017, 29(7): 740-749.
[9] 王晶, 姚楠*. 适用于合成气制甲烷的Ni基催化剂[J]. 化学进展, 2017, 29(12): 1509-1517.
[10] 徐国华, 李从刚, 刘买利. 类细胞环境下蛋白质结构与功能的NMR研究[J]. 化学进展, 2017, 29(1): 75-82.
[11] 王霄, 许吉英, 陈义. 生物分子相互作用动力学的表面等离子体共振研究方法[J]. 化学进展, 2015, 27(5): 550-558.
[12] 靳永勇, 郝盼盼, 任军, 李忠. 单原子催化——概念、方法与应用[J]. 化学进展, 2015, 27(12): 1689-1704.
[13] 钟大根, 刘宗华, 左琴华, 薛巍. 高分子纳米材料与血浆蛋白的相互作用[J]. 化学进展, 2014, 26(04): 638-646.
[14] 王周君, 傅强, 包信和. 新型催化剂载体碳化硅的研究现状[J]. 化学进展, 2014, 26(04): 502-511.
[15] 熊雨婷, 李闵闵, 熊鹏, 杨梦, 卿光焱, 孙涛垒. 水相中糖识别人工受体[J]. 化学进展, 2014, 26(01): 48-60.