English
新闻公告
More
化学进展 2010, Vol. 22 Issue (11): 2199-2206 前一篇   后一篇

• 综述与评论 •

基于ICP-MS的蛋白质定量方法*

郑令娜1,2  王萌2**  王华建2   李建军1**  丰伟悦2   柴之芳2   

  1. (1. 郑州大学化学系 郑州450001; 2. 中国科学院高能物理研究所核分析技术重点实验室,纳米生物效应与安全性实验室 北京 100049)
  • 收稿日期:2010-04-19 修回日期:2010-07-09 出版日期:2010-11-24 发布日期:2010-10-20
  • 通讯作者: 王萌 E-mail:wangmeng@ihep.ac.cn
  • 基金资助:

    国家自然科学基金;中国博士后科学基金;国家自然科学基金委与香港研究资助局联合基金

Quantification of Proteins by Use of ICP-MS

Zheng Lingna1,2  Wang Meng2**   Wang Huajian Li JianjunFeng Weiyue2   Chai Zhifang2   

  1. (1. Department of Chemistry, Zhengzhou University, Zhengzhou 450001,China; 2. Key Laboratory of Nuclear Analytical Techniques and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049,China)
  • Received:2010-04-19 Revised:2010-07-09 Online:2010-11-24 Published:2010-10-20
  • Contact: Wang meng E-mail:wangmeng@ihep.ac.cn

蛋白质组学已经成为生命科学研究中最为活跃的领域之一。研究蛋白质的生物功能,不但需要高通量的鉴定蛋白质,还需要定量分析动态变化的蛋白质,即定量蛋白质组学研究。蛋白质的定量研究有助于发现新的生物功能,并可以用于疾病的预警和药物靶点的发现。现有的定量蛋白质组学研究主要利用同位素标记结合生物质谱(电喷雾电离质谱ESI-MS,基质辅助激光解吸电离质谱MALDI-MS)技术而实现。近年来电感耦合等离子体质谱(ICP-MS)作为ESI-MS和MALDI-MS的补充,越来越多地应用于蛋白质的定量分析,特别是蛋白质的绝对定量分析。ICP-MS是检测生物分子中痕量元素的理想工具,具有灵敏度高、动态范围广,不易受基体的影响等优点。本文将讨论基于ICP-MS的分析方法,及其在蛋白质定量分析和免疫分析中的部分成功应用。

Proteomics has become one of the most active fields in life sciences. The study of biological functions of proteins not only relies on high-throughput identification of proteins, but also on quantitative analysis of the dynamic proteins that is termed quantitative proteomics. Quantitative proteomics is anticipated to provide new insights into biological functions, facilitate the identification of prognostic disease markers and contribute to discovery of proteins as therapeutic targets. The available methods for quantitative proteomics are mainly based on the isotope tagging combined with biological mass spectrometry (such as Electrospray Ionization Mass Spectrometry, ESI-MS, and Matrix Assisted Laser Desorption Ionization Mass Spectrometry, MALDI-MS). Recently inductivity coupled plasma-mass spectrometry (ICP-MS), as an attractive complement to ESI-MS and MALDI-MS, has played an increasing role in protein quantification, especially in absolute protein quantification. ICP-MS is an ideal instrument for determination of trace elements in biomolecules because of its unique advantages, such as high sensitivity, wide dynamic range, and minimal matrix effects. This review will selectively discuss the recent advances of ICP-MS based techniques and their applications in protein quantification and immunoassay.

Contents 
1 Introduction
2 Problems of protein quantification 
3 Available methods for protein quantification 
4 The advantages of ICP-MS in proteins quantification 
5 ICP-MS-based methods for protein quantification
5.1 Protein quantification based on element labeling and ICP-MS detection
5.2 ICP-MS-based Immunoassay
6 Conclusions and outlook

()

[1] Wilkins M R, Pasquali C, Appel R D, Ou K, Golaz O, Sanchez J C, Yan J X, Gooley A A, Hughes G, HumpherySmith I, Williams K L, Hochstrasser D F. Bio-Technol., 1996, 14: 61—65
[2] Pandey A, Mann M. Nature, 2000, 405: 837—846
[3] Ong S E, Mann M. Nat. Chem. Biol., 2005, 1: 252—262
[4] Tyers M, Mann M. Nature, 2003, 422: 193—197
[5] Bettmer J, Bayon M M, Encinar J R, Sanchez M L F, de la Campa M D F, Medel A S. Journal of Proteomics, 2009, 72: 989—1005
[6] Pan S, Zhang H, Rush J, Eng J, Zhang N, Patterson D, Comb M J, Aebersold R. Mol. Cell. Proteomics, 2005, 4: 182—190
[7] Koellensperger G, Groeger M, Zinkl D, Petzelbauer P, Hann S. J. Anal. At. Spectrom., 2009, 24: 97—102
[8] Lambert J P, Ethier M, Smith J C, Figeys D. Anal. Chem., 2005, 77: 3771—3787
[9] Aebersold R, Mann M. Nature, 2003, 422: 198—207
[10] Aebersold R, Goodlett D R. Chem. Rev., 2001, 101: 269—295
[11] Domon B, Aebersold R. Science, 2006, 312: 212—217
[12] Ong S E, Blagoev B, Kratchmarova I, Kristensen D B, Steen H, Pandey A, Mann M. Mol. Cell. Proteomics, 2002, 1: 376—386
[13] Mirgorodskaya O A, Kozmin Y P, Titov M I, Korner R, Sonksen C P, Roepstorff P. Rapid Commun. Mass Spectrom., 2000, 14: 1226—1232
[14] Gygi S P, Rist B, Gerber S A, Turecek F, Gelb M H, Aebersold R. Nat. Biotechnol., 1999, 17: 994 — 999
[15] Ross P L, Huang Y L N, Marchese J N, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin D. J. Mol. Cell. Proteomics, 2004, 3: 1154—1169
[16] Jakubowski N, Lobinski R, Moens L. J. Anal. At. Spectrom., 19: 1— 4
[17] Wind M, Lehmann W D. J. Anal. At. Spectrom., 2004, 19: 20—25
[18] Szpunar J, Lobinski R. Anal. Bioanal. Chem., 2002, 373: 404 — 411
[19] Wang M, Feng W Y, Zhao Y L, Chai Z F. Mass Spectrom. Rev., 2010, 29: 326—348
[20] Lobinski R, Schaumlffel D, Szpunar J. Mass Spectrom. Rev., 2006, 25: 255—289
[21] Svantesson E, Pettersson J, Markides K E. J. Anal. At. Spectrom., 2002, 17: 491—496
[22] Prange A, Proefrock D. J. Anal. At. Spectrom., 2008, 23: 432—459
[23] Schaumloffel D, Lobinski R. Int. J. Mass Spectrom., 2005, 242: 217—223
[24] Wang M, Feng W Y, Wang H J, Zhang Y, Li J, Li B, Zhao Y L, Chai Z F. J. Anal. At. Spectrom., 2008, 23: 1112—1116
[25] Wang M, Feng W Y, Lu W, Li B, Wang B, Zhu M T, Wang Y, Yuan H, Zhao Y L, Chai Z F. Anal. Chem., 2007, 79: 9128—9134
[26] Kutscher D J, Busto M E D, Zinn N, Sanz-Medel A, Bettmer J. J. Anal. At. Spectrom., 2008, 23: 1359—1364
[27] Kutscher D J, Bettmer J. Anal. Chem., 2009, 81: 9172—9177
[28] Guo Y F, Xu M, Yang L M, Wang Q Q. J. Anal. At. Spectrom., 2009, 24: 1184—1187
[29] Jakubowski N, Messerschmidt J, Anorbe M G, Waentig L, Hayen H, Roos P H. J. Anal. At. Spectrom., 2008, 23: 1487—1496
[30] Pereira N A, Encinar J R, Ballesteros A, González J M, Sanz-Medel A. Anal. Chem., 2009, 81: 5390—5399
[31] Becker J S, Jakubowski N. Chem. Soc. Rev., 2009, 38: 1969—1983
[32] Whetstone P A, Butlin N G, Corneillie T M, Meares C F. Bioconjugate Chem., 2004, 15: 3—6
[33] Liu H L, Zhang Y J, Wang J L, Wang D, Zhou C X, Cai Y, Qian X H. Anal. Chem., 2006, 78: 6614—6621
[34] Jakubowski N, Waentig L, Hayen H, Venkatachalam A, von Bohlen A, Roos P H, Manz A. J. Anal. At. Spectrom., 2008, 23: 1497—1507
[35] Yan X, Xu M, Yang L, Wang Q Q. Anal. Chem., 2010, 82: 1261—1269
[36] Rappel C, Schaumlffel D. Anal. Chem., 2008, 81: 385—393
[37] Baranov V I, Quinn Z, Bandura D R, Tanner S D. Anal. Chem., 2002, 74: 1629—1636
[38] Zhang C, Wu F B, Zhang Y Y, Wang X, Zhang X R. J. Anal. At. Spectrom., 2001, 16: 1393—1396
[39] Terenghi M, Elviri L, Careri M, Mangia A, Lobinski R. Anal. Chem., 2009, 81: 9440—9448
[40] Ornatsky O, Baranov V, Bandura D R, Tanner S D, Dick J. J. Immunol. Methods, 2006, 308: 68—76
[41] Ornatsky O I, Baranov V, Bandura D, Tanner S D, Dick J. Faseb J., 2006, 20: A100—A100
[42] Hu S H, Zhang S C, Hu Z C, Xing Z, Zhang X R. Anal. Chem., 2007, 79: 923—929
[43] Zhang C, Zhang Z Y, Yu B B, Shi J J, Zhang X R. Anal. Chem., 2002, 74: 96—99
[44] Baranov V I, Quinn Z A, Bandura D R, Tanner S D. J. Anal. At. Spectrom., 2002, 17: 1148—1152
[45] Hu S H, Liu R, Zhang S C, Huang Z, Xing Z, Zhang X R. J. Am. Soc. Mass Spectrom., 2009, 20: 1096—1103
[46] Lou X D, Zhang G H, Herrera I, Kinach R, Ornatsky O, Baranov V, Nitz M, Winnik M A. Angew. Chem. Int. Ed., 2007, 46: 6111—6114
[47] Tanner S D, Ornatsky O, Bandura D R, Baranov V I. Spectroc. Acta Pt. B-Atom. Spectr., 2007, 62: 188—195
[48] Zhao Q, Lu X F, Yuan C G, Li X F, Le X C. Anal. Chem., 2009, 81: 7484—7489
[49] Patel P, Jones P, Handy R, Harrington C, Marshall P, Evans E H. Anal. Bioanal. Chem., 2008, 390: 61—65
[50] Ahrends R, Pieper S, Kuhn A, Weisshoff H, Hamester M, Lindemann T, Scheler C, Lehmann K, Taubner K, Linscheid M W. Mol. Cell. Proteomics, 2007, 6: 1907—1916
[51] Ahrends R, Pieper S, Neumann B, Scheler C, Linscheid M W. Anal. Chem., 2009, 81: 2176—2184
[52] Ahlgren S, Orlova A, Rosik D, Sandstrom M, Sjoberg A, Basstrup B, Widmark O, Fant G,Feldwisch J, Tolmachev V. Bioconjugate Chem., 2008, 19: 235—243
[53] Zhang C, Wu F B, Zhang X R. J. Anal. At. Spectrom., 2002, 17: 1304—1307
[54] Zhang S C, Zhang C, Xing Z, Zhang X R. Clin. Chem., 2004, 50: 1214—1221
[55] Hutchinson R W, Cox A G, McLeod C W, Marshall P S, Harper A, Dawson E L, Howlett D R. Anal. Biochem., 2005, 346: 225—233
[56] Ornatsky O I, Kinach R, Bandura D R, Lou X, Tanner S D, Baranov V I, Nitz M, Winnik M A. J. Anal. At. Spectrom., 2008, 23: 463—469
[57] Jakubowski N, Messerschmidt J, Aňorbe M G, Waentig L, Hayen H, Roos P H. J. Anal. At. Spectrom., 2008, 23: 1487—1496
[58] Seuma J, Bunch J, Cox A, McLeod C, Bell J, Murray C. Proteomics, 2008, 8: 3775—3784
[59] 米薇 (Mi W), 王晶 (Wang J). 生物化学与生物物理进展 (Progress in Biochemistry and Biophysics), 2010, (02): 224—229

[1] 彭钢, 刘白玲*, 王斌, 李晨英. 临近闪烁分析法在高通量筛选中的应用[J]. 化学进展, 2012, 24(08): 1572-1582.
[2] 吕春晖, 王硕, 方国臻, 汤轶伟, 王岁楼. 分子印迹在仿生免疫吸附分析中的应用[J]. 化学进展, 2012, 24(05): 844-851.
[3] 刘涛, 孙丽宁, 刘政, 仇衍楠, 施利毅. 稀土上转换发光纳米材料的应用[J]. 化学进展, 2012, 24(0203): 304-317.
[4] 冷川,张晓清,鞠熀先. 微流控芯片上的免疫分析*[J]. 化学进展, 2009, 21(04): 687-695.
[5] 严枫,鞠熀先. 免疫分析与细胞检测新原理与新方法研究*[J]. 化学进展, 2007, 19(012): 1852-1860.
[6] 康娟,张新祥. 荧光纳米颗粒标记免疫分析*[J]. 化学进展, 2006, 18(11): 1523-1529.
[7] 邓洁丽,郭彩欣,鲁闻生,刘涛,江龙. 联乙炔囊泡——一种基于分子组装的生物分子识别器件*[J]. 化学进展, 2006, 18(11): 1397-1408.
[8] 王立凯,冯喜增. 微流控芯片技术在生命科学研究中的应用*[J]. 化学进展, 2005, 17(03): 482-498.
[9] 米健秋,张新祥,常文保. 毛细管电泳免疫分析的发展及动向*[J]. 化学进展, 2003, 15(01): 31-.
[10] 杨晓达,常文保,慈云祥. 免疫分析法进展[J]. 化学进展, 1995, 7(02): 83-.
阅读次数
全文


摘要

基于ICP-MS的蛋白质定量方法*