English
新闻公告
More
化学进展 2010, Vol. 22 Issue (11): 2179-2190 前一篇   后一篇

• 综述与评论 •

量子点在电化学生物传感研究中的应用*

刘建云  黄乾明**  王显祥**  李珍  陈华萍   

  1. (四川农业大学生命科学与理学院 四川雅安 625014)
  • 收稿日期:2010-04-09 修回日期:2010-05-17 出版日期:2010-11-24 发布日期:2010-10-20
  • 通讯作者: 黄乾明 E-mail:hqming@sicau.edu.cn
  • 基金资助:

    四川省教育厅重点科研项目;四川农业大学科技创新基金

Application of Quantum Dots Based Electrochemical Biosensors

Liu Jianyun   Huang Qianming**   Wang Xianxiang**   Li Zhen   Chen Huaping   

  1. (College of Life and Science,Sichuan Agricultural University, Ya’an 625014,China)
  • Received:2010-04-09 Revised:2010-05-17 Online:2010-11-24 Published:2010-10-20
  • Contact: Huang Qianming E-mail:hqming@sicau.edu.cn

量子点( Quantum dots,QDs )由于具有独特的光学、电化学和电致化学发光特性已受到广泛地重视,而利用量子点构建电化学生物传感器则是量子点最有前途的应用领域之一。量子点具有的高比表面积、高表面活性及小尺寸等特性使它对外界的光、电、温度等十分地敏感,外界环境的微小改变就会迅速引起其表面或界面粒子价态和电子转移行为的显著变化,基于生物大分子引起的QDs表面电化学行为变化而构建的电化学生物传感器,其特点是响应灵敏高、速度快且选择性优良。本文对量子点的光学、电化学和电致化学发光特性作了简单介绍,并重点回顾了其在电致化学发光、免疫分析、DNA杂交、蛋白质检测、农药检测和糖类检测电化学生物传感研究中的应用。同时,对量子点在电化学生物传感研究中的应用前景及研究方向进行了评述和展望。

Quantum dots(QDs) have attracted enormous interest due to their many novel properties such as unique optical, electrochemical and electrochemical luminescence properties. One of the most active trends is the application of QDs in electrochemical and biological sensing, due to their high surface-to-volume ratio, high reactivity and small size. Slight changes in the external environment will lead to significant changes in particle valence and electron transfer. Based on these significant changes, QDs can be used to construct electrochemical biosensor with biological macromolecules, which is characterized by high sensitivity, rapid response and high selectivity. In this article, we review their applications in electrochemical luminescence sensors, immunosensors, DNA sensors, protein sensors, pesticide sensors and carbohydrate sensors. Meanwhile, the prospects and research directions of QDs are given based on the analysis of this research field.

Contents
1 Introduction
2 Quantum dots
2.1 Optical properties of quantum dots
2.2 Electrochemical properties of quantum dots
2.3 Electrochemical luminescence properties of quantum dots
3 Applications of quantum dots based electrochemical biosensors
3.1 Applications of quantum dots based electrochemical luminescence sensors
3.2 Applications of quantum dots based electrochemical Immunosensor
3.3 Applications of quantum dots based electrochemical DNA sensors
3.4 Applications of quantum dots based electrochemical protein sensors
3.5 Applications of quantum dots based electrochemical pesticide sensors
3.6 Applications of quantum dots based electrochemical carbohydrate sensors
4 Conclusions and outlook

中图分类号: 

()

[1] Medintz I L, Uyeda H T, Goldman E R, Mattoussi H. Nat. Mater., 2005, 4(6): 435—446
[2] Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sundaresan G, Wu A M, Gambhir S S, Weiss S. Science, 2005, 307(5709): 538—544
[3] Bard A J, Ding Z, Myung N. Electrochemistry and Electrogenerated Chemiluminescence of Semiconductor Nanocrystals in Solutions and in Films. Heidelberg: Springer Berlin, 2005, 1—57
[4] Gill R, Zayats M, Willner I. Angew. Chem. Int. Ed., 2008, 47(40): 7602—7625
[5] 刘建云 (Liu J Y), 黄乾明 (Huang Q M), 王显祥 (Wang X X), 杨群峰 (Yang Q F), 陈华萍 (Chen H P). 化学进展 (Progress in Chemistry), 2010, 6: 1068—1076
[6] Guyot-Sionnest P. Microchimica. Acta, 2008, 160(3): 309—314
[7] Franzl T, Shavel A, Rogach A L, Gaponik N, Klar T A, Eychmuller A, Feldmann J. Small, 2005, 1(4): 392—395
[8] Achermann M, Petruska M A, Crooker S A, Klimov V I. J. Phys. Chem. B, 2003, 107: 13782—13787
[9] Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat P V. J. Am. Chem. Soc., 2008, 130(12): 4007—4015
[10] Rmachandran S, Merrill N E, Blick R H, Van Der Weide D W. Biosens. Bioelectron., 2005, 20(10): 2173—2176
[11] Buso D, Della Giustina G, Brusatin G, Guglielmi M, Martucci A, Chiasera A, Ferrari M, Romanato F. J. Nanosci. Nanotechnol., 2009, 9(3): 1858—1864
[12] Houtepen A J, Kockmann D, Vanmaekelbergh D. Nano Lett., 2008, 8(10): 3516—3520
[13] Yue Z, Khalid W, Zanella M, Abbasi A, Pfreundt A, Rivera Gil P, Schubert K, Lisdat F, Parak W. Anal. Bioanal. Chem.,2010, 396(3): 1095—1103
[14] Nassiopoulou A G, Olzierski A, Tsoi E, Berbezier I, Karmous A. J. Nanosci. Nanotechnol., 2007, 7(1): 316—321
[15] Poznyak S K, Osipovich N P, Shavel A, Talapin D V, Gao M, Eychmuller A, Gaponik N. J. Phys. Chem. B, 2005, 109(3): 1094—1100
[16] Querner C, Reiss P, Sadki S, Zagorska M, Pron A. Phys. Chem. Chem. Phys., 2005, 7(17): 3204—3209
[17] Sun Q, Subramanyam G, Dai L, Check M, Campbell A, Naik R, Grote J, Wang Y. ACS Nano, 2009, 3(3): 737—743
[18] Medintz I L, Pons T, Trammell S A, Grimes A F, English D S, Blanco-Canosa J B, Dawson P E, Mattoussi H. J. Am. Chem. Soc., 2008, 130(49): 16745—16756
[19] Pradhan S, Chen S, Wang S, Zou J, Kauzlarich S M, Louie A Y. Langmuir, 2006, 22(2): 787—793
[20] De Girolamo J, Reiss P, Zagorska M, De Bettignies R, Bailly S, Mevellec J Y, Lefrant S, Travers J P, Pron A. Phys. Chem. Chem. Phys., 2008, 10(27): 4027—4035
[21] 王显祥 (Wang X X), 杨中科 (Yang Z K), 郭敏 (Guo M), 刘怡 (Liu Y), 黄娟 (Huang J), 单志 (Shan Z), 杨婉身 (Yang W S). 无机化学学报 (Chinese Journal of Inorganic Chemistry), 2009, 25(3): 496—500
[22] 王显祥 (Wang X X), 黄娟 (Huang J), 靳茹文 (Jin R W), 杨中科 (Yang Z K), 单志 (Shan Z), 杨婉身 (Yang W S). 化学学报 (Acta Chimica Sinica), 2009, 67(17): 2025—2030
[23] Sun J, Gao M, Feldmann J. J. Nanosci. Nanotechnol., 2001, 1(2): 133—136
[24] Chen W, Grouquist D, Roark J. J. Nanosci. Nanotechnol., 2002, 2(1): 47—53
[25] Wang P, Abrusci A, Wong H M, Svensson M, Andersson M R, Greenham N C. Nano Lett., 2006, 6(8): 1789—1793
[26] Han H, You Z, Liang J, Sheng Z. Front. Biosci., 2007, 12: 2352—2357
[27] Hua L J, Han H Y, Zhang X H. Talanta, 2009, 77(5): 1654—1659
[28] Liu X, Ju H. Anal. Chem., 2008, 80(14): 5377—5382
[29] Chang P C, Buckley D N, Ahmed S, Shiojima K. State-of-the-Art-Program on Compound Semiconductors (SOTAPOCS XLII) and Processes at the Compound-Semiconductors/Solution Interface. NY:Electrochemical Society, 2005. 129—137
[30] Myung N, Bae Y, Bard A J. Nano Lett., 2003, 3: 1053—1055
[31] Zou G Z, Ju H X. Anal. Chem., 2004, 76(23): 6871—6876
[32] Han H, Sheng Z, Liang J. Anal. Chim. Acta, 2007, 596(1): 73—78
[33] Jiang H, Ju H. Anal. Chem., 2007, 79(17): 6690—6696
[34] Liu X, Jiang H, Lei J, Ju H. Anal. Chem., 2007, 79(21): 8055—8060
[35] Liu X, Cheng L X, Lei J P, Ju H X. Analyst, 2008, 133: 1161—1163
[36] Liu X, Guo L, Cheng L, Ju H. Talanta, 2009, 78(3): 691—694
[37] Cheng L X, Liu X, Lei J P, Ju H X. Anal. Chem., 2010, 82: 3359—3364
[38] Jie G, Huang H, Sun X, Zhu J J. Biosens. Bioelectron., 2008, 23(12): 1896—1899
[39] Jie G, Zhang J, Wang D, Cheng C, Chen H Y, Zhu J J. Anal. Chem., 2008, 80(11): 4033—4039
[40] Jie G, Li L, Chen C, Xuan J, Zhu J J. Biosens. Bioelectron., 2009, 24(11): 3352—3358
[41] Guo L, Liu X, Hu Z, Deng S Y, Ju H X. Electroanalysis, 2009, 21: 2495—2498
[42] Wu H, Liu G, Wang J, Lin Y. Electrochem. Commun., 2007, 9:1573—1577
[43] Liu G, Wang J, Kim J, Jan M R, Collins G E. Anal. Chem., 2004, 76(23): 7126—7130
[44] Yu H W, Lee J, Kim S, Nguyen G H, Kim I S. Anal. Bioanal. Chem., 2009, 394(8): 2173—2181
[45] Wang J, Liu G, Wu H, Lin Y. Small, 2008, 4(1): 82—86
[46] Du D, Ding J, Tao Y, Li H, Chen X. Biosens. Bioelectron., 2008, 24(4): 869—874
[47] Ding C, Zhang Q, Zhang S. Biosens. Bioelectron, 2009, 24(8): 2434—2440
[48] Cui R, Pan H C, Zhu J J, Chen H Y. Anal. Chem, 2007, 79(22): 8494—8501
[49] Liu G, Lin Y Y, Wang J, Wu H, Wai C M, Lin Y. Anal. Chem., 2007, 79(20): 7644—7653
[50] Thurer R, Vigassy T, Hirayama M, Wang J, Bakker E, Pretsch E. Anal. Chem., 2007, 79(13): 5107—5110
[51] Ho J A, Lin Y C, Wang L S, Hwang K C, Chou P T. Anal. Chem., 2009, 81(4): 1340—1346
[52] Wang J, Liu G, Merkoci A. J. Am. Chem. Soc., 2003, 125(11): 3214—3215
[53] Pumera M, Castaneda M T, Pividori M I, Eritja R, Merkoci A, Alegret S. Langmuir, 2005, 21(21): 9625—9629
[54] Brousseau L C. J. Am. Chem. Soc., 2006, 128(35): 11346—11347
[55] Marin S, Merkoci A. Nanotechnology, 2009, 20(5): 055101
[56] Dong H, Yan F, Ji H, Wong Danny K Y, Ju H. Adv. Funct. Mater., 2010, 20: 1—7
[57] Hansen J A, Wang J, Kawde A N, Xiang Y, Gothelf K V, Collins G. J. Am. Chem. Soc., 2006, 128(7): 2228—2229
[58] Wang Z, Wang J H, Xu Q, Yang Q, Zhang X Y, Zhao Y D. Microchimica Acta, 2009, 166(1): 133—138
[59] Wang Z, Xu Q, Wang J H, Yang Q, Yu J H, Zhao Y D. Microchim. Acta, 2009, 165: 387—392
[60] Stoll C, Gehring C, Schubert K, Zanella M, Parak W J, Lisdat F. Biosens. Bioelectron., 2008, 24(2): 260—265
[61] Katz E, Zayats M, Willner I, Lisdat F. Chem. Commun., 2006, (13): 1395—1397
[62] Xu Y, Liang J, Hu C, Wang F, Hu S, He Z. J. Biol. Inorg. Chem., 2007, 12(3): 421—427
[63] Wang Z, Xu Q, Wang H Q, Yin Z H, Yu J H, Zhao Y D. Anal. Sci., 2009, 25(6): 773—777
[64] Cheng W, Yan F, Ding L, Ju H X, Yin Y B. Anal. Chem., 2010, 82(8): 3337—3342
[65] Liu G, Wang J, Barry R, Petersen C, Timchalk C, Gassman P L, Lin Y. Chemistry, 2008, 14(32): 9951—9959
[66] Du D, Chen S, Song D, Li H, Chen X. Biosens. Bioelectron., 2008, 24(3): 475—479
[67] Wang H, Wang J, Timchalk C, Lin Y. Anal. Chem., 2008, 80(22): 8477—8484
[68] Ding L, Cheng W, Wang X, Ding S, Ju H X. J. Am. Chem. Soc., 2008, 130(23): 7224—7225
[69] Han E, Ding L, Lian H Z, Ju H X. Chem. Commun., 2010, DOI: 10.1039/c001331e
[70] Liu Q, Lu X, Li J, Yao X. Biosens. Bioelectron., 2007, 22(12): 3203—3209
[71] Dai Z, Kawde A N, Xiang Y, La Belle J T, Gerlach J, Bhavanandan V P, Joshi L, Wang J. J. Am. Chem. Soc., 2006, 128(31): 10018—10019
[72] Schubert K, Khalid W, Yue Z, Parak W J, Lisdat F. Langmuir, 2010, 26(2): 1395—1400
[73] Carrara S, Boero C, Micheli G. Quantum Dots and Wires to Improve Enzymes-Based Electrochemical Bio-Sensing. (Eds. Schmid A,et al). Berlin: Springer, 2009. 189—199

[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[3] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[4] 刘陈, 李强翔, 张迪, 郦瑜杰, 刘金权, 肖锡林. MCM-41型介孔二氧化硅纳米颗粒的制备及其在DNA生物传感器中的应用[J]. 化学进展, 2021, 33(11): 2085-2102.
[5] 李悦, 李景虹. 基于CRISPR的生物分析化学技术[J]. 化学进展, 2020, 32(1): 5-13.
[6] 宫苗, 王晓英, 王晓宁. 血液肿瘤相关生物标志物的电化学传感检测[J]. 化学进展, 2019, 31(6): 894-905.
[7] 周洋洋, 钟建, 卞晓军, 刘刚, 李亮, 颜娟. 信号放大技术在食品安全检测领域的应用[J]. 化学进展, 2018, 30(2/3): 206-224.
[8] 邓王平, 王丽华, 宋世平, 左小磊. 生物传感器在POCT中的应用研究[J]. 化学进展, 2016, 28(9): 1341-1350.
[9] 戴莹萍, 嵇正平, 王赪胤, 胡效亚, 汪国秀. 微悬臂生物传感器[J]. 化学进展, 2016, 28(5): 697-710.
[10] 董世彪, 焦雄, 赵荣涛, 许金坤, 宋宏彬, 郝荣章. DNA四面体结构纳米材料及其应用[J]. 化学进展, 2015, 27(9): 1191-1197.
[11] 宋英攀, 冯苗, 詹红兵*. 石墨烯的边界效应在电化学生物传感器中的应用[J]. 化学进展, 2013, 25(05): 698-706.
[12] 李晶, 杨晓英*. 新型碳纳米材料——石墨烯及其衍生物在生物传感器中的应用[J]. 化学进展, 2013, 25(0203): 380-396.
[13] 闻艳丽, 林美华, 裴昊, 鲁娜, 樊春海*. 基于电化学技术的microRNA生物传感器[J]. 化学进展, 2012, (9): 1656-1664.
[14] 宋英攀, 冯苗, 詹红兵*. 石墨烯纳米复合材料在电化学生物传感器中的应用[J]. 化学进展, 2012, (9): 1665-1673.
[15] 冯晓苗, 李瑞梅, 杨晓燕, 侯文华. 新型碳纳米材料在电化学中的应用[J]. 化学进展, 2012, 24(11): 2158-2166.