English
新闻公告
More
化学进展 2010, Vol. 22 Issue (11): 2156-2164 前一篇   后一篇

• 综述与评论 •

基于环糊精和富勒烯偶联体系的新型分子机器*

孙涛  张华承  李月明  辛飞飞  孔丽  郝爱友**   

  1. (山东大学化学与化工学院 济南 250100)
  • 收稿日期:2010-03-29 修回日期:2010-04-17 出版日期:2010-11-24 发布日期:2010-10-20
  • 通讯作者: 孙涛 E-mail:stred@mail.sdu.edu.cn
  • 基金资助:

    山东大学研究生自主创新基金资助项目

Novel Molecular Machine Based on the Cyclodextrin—Fullerene Coupling System

Sun Tao Zhang Huacheng Li Yueming  Xin Feifei   Kong Li   Hao Aiyou**   

  1. (School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China)
  • Received:2010-03-29 Revised:2010-04-17 Online:2010-11-24 Published:2010-10-20
  • Contact: Sun Tao E-mail:stred@mail.sdu.edu.cn

超分子化学是当前研究热点领域之一,利用超分子体系来模拟宏观过程,进而将宏观机器纳米尺寸化更是备受瞩目。环糊精与富勒烯各自具有非常优良的性质,而基于环糊精和富勒烯偶联体系的新型“加工型”分子机器,与传统的“运动型”分子机器不同,不是强调分子间与分子内的位置变化,而是强调对特定客体分子“识别—捕捉—加工—释放”的过程。这种新型的分子机器将为包括生物酶模拟、生物过程研究、光能固定等领域的研究提供新思路。本文综述了环糊精和富勒烯偶联体系的研究进展:首先介绍了不同种类的环糊精和富勒烯偶联体系的合成,包括合成思路、步骤方法及表征;然后叙述了此体系的应用领域,包括分子识别、DNA裂解、电子传输等方面;最后结合现阶段的研究状况,对其发展前景进行了展望。

Supramolecular chemistry is a hot research topic in current chemistry. It is more attractive to build machines in a nanometer scale by mimicking the processes in macro-scale through the supramolecular way. Being different from the traditional “motile” molecular machines, the novel “processing” molecular machines based on the cyclodextrin-fullerene coupling system focus on a “recognition-capture-processing-release” procedure, but not on the position changes in and between molecules. This new molecular machine will supply a new approach in the area of enzyme mimic, biological process research, photo-immobilization, etc. Here, the development of cyclodextrin-fullerene coupling system is reviewed. Firstly, the synthesis of different kinds of cyclodextrin-fullerene coupling systems, including the synthesis clues, approaches methods and characterization, is introduced. Then, the application of the system is emphatically described, including molecular recognition, DNA cleavage and electron transfer, etc. At last, combination of current development of the system, the prospects are pointed out.

Contents 
1.Introduction
2Synthesisi of cyclodextrin-fullerene coupling system
2.1 Synthesisi of the 1:1 cyclodextrin-fullerene coupling system
2.2 Synthesisi of the 2:1 cyclodextrin-fullerene coupling system 
3 Application of of cyclodextrin-fullerene coupling system
3.1 Molecule recognition
3.2 DNA cleavage
3.3 Research of electron transfer 
4 Prospects

中图分类号: 

()

[1] Kroto H W, Heath J R, Brien S C, Curl R F, Smalley R E. Nature, 1985, 318: 162—163
[2] Curl R F. Angew. Chem. Int. Ed. Engl., 1997, 36: 1566—1576
[3] Kroto H W. Angew. Chem. Int. Ed. Engl., 1997, 36: 1578—1593
[4] Smalley R E. Angew. Chem. Int. Ed. Engl., 1997, 36: 1594—1603
[5] 李小罡(Li X G), 徐愉(Xu Y), 刘云圻(Liu Y Q), 朱道本(Zhu D B), 杨世和(Yang S H). 化学进展(Progress in Chemistry), 2000, 12(4): 385—390
[6] Brabec C J, Sariciftci N S, Hummelen J C. Adv. Funct. Mater., 2001, 11(1): 15—26
[7] 韩旭(Han X), 李疏芬(Li S F). 化学进展(Progress in Chemistry), 2006, 18(6): 715—720
[8] Sijbesma R, Srdanov G, Wudl F, Castoro J A, Wilkins C, Friedman S H, de Camp D L, Kenjon G L. J. Am. Chem. Soc., 1993, 115: 6510—6512
[9] Friedman S H, de Camp D L, Sijbesma R, Srdanov G, Wudl F, Kenjon G L. J. Am. Chem. Soc., 1993, 115: 6506—6509
[10] Ros T D, Prato M. Chem. Commun., 1999, 663—669
[11] Filippone S, Heimanna F, Rassat A. Chem. Commun., 2002, 1508—1509
[12] 童林荟(Tong L H). 环糊精化学——基础与应用(Cyclodextrin Chemistry——Foundation and Application). 北京:科学出版社(Beijing:Science Press), 2001. 10—20
[13] Bender M L, Komiyama M. Cyclodextrin Chemistry. New York: Springer-Verlag, 1978
[14] Szejtli J. Cyclodextrin Technology. Dordrecht: Kluwar Academic Publishers, 1988
[15] Liu Y, Li L, Zhang H Y, Song Y. J. Org. Chem., 2003, 68 (2): 527—536
[16] Takahashi K. Chem. Rev., 1998, 98: 2013—2033
[17] Sun T, Hao A Y, Shen J, Song L Q. Synthetic Commun., 2009, 39: 4309—4314
[18] Zhang H C, Shen J, Liu Z N, Bai Y, An W, Hao A Y. Carbohyd. Res., 2009, 344: 2028—2035
[19] 胡惠媛(Hu H Y), 刘波(Liu B). 化学进展(Progress in Chemistry), 2008, 20(12): 1951—1963
[20] Uekama K, Hirayama F, Irie T. Chem. Rev., 1998, 98: 2045—2076
[21] 张奕(Zhang Y), 高翔(Gao X). 应用化学(Chinese Journal of Applied Chemistry), 2007, 24(1):1—7
[22] Nishibayashi Y, Saito M, Uemura S, Takekuma S, Takekuma H, Yoshida Z. Nature, 2004, 428: 279—280
[23] Guan Z, Wang Y, Chen Y, Zhang L, Zhang Y. Tetrahedron, 2009, 65: 1125—1129
[24] Buvari B A, Rohonczy J, Rozlosnik N, Gilanyi T, Szabo B, Lovas G, Braun T, Samu J, Barcza L. J. Chem. Soc. Perkin Trans. 2, 200l, 191—196
[25] Murthy C N, Geckeler K E. Chem. Commun., 200l, 1194—1195
[26] Priyadarsini K I, Mohan H, Tyagi A K, Mittal J P. J. Phys. Chem., 1994,98:4756—4759
[27] Samal S, Geckeler K E. Chem. Commun., 2000, 1101—1102
[28] Balzani V, Credi A, Raymo F M, Stoddart J F. Angew. Chem. Int. Ed., 2000, 39: 3348—3391
[29] Thordarson P, Bijsterveld E J A, Rowan A E, Nolte R J M. Nature, 2003, 424: 915—918
[30] Hattori G, Hori T, Miyake Y, Nishibayashi Y. J. Am. Chem. Soc., 2007, 129: 12930—12931
[31] Sasaki T, Guerrero J M, Tour J M. Tetrahedron, 2008, 64: 8522—8529
[32] 张华承(Zhang H C), 郝爱友(Hao A Y), 申健(Shen J). 有机化学(Chinese Journal of Organic Chemistry), 2008, 28(1): 954—963
[33] 孙涛(Sun T), 申健(Shen J), 孙宏元(Sun H Y), 郝爱友(Hao A Y). 化学进展(Progress in Chemistry), 2009, 21(12): 2515—2524
[34] Samal S, Geckeler K E. Chem. Commun., 2001, 2224—2225
[35] Yuan D Q, Koga K, Kourogi Y, Fujita K. Tetrahedron Lett., 2001, 42: 6727—6729
[36] Chen Y, Wang Y, Rassat A, Sinay P, Zhao Y, Zhang Y. Tetrahedron, 2006, 62: 2045—2049
[37] Liu Y, Zhao Y L, Chen Y, Liang P, Li L. Tetrahedron Lett., 2005, 46: 2507—2511
[38] Giacalone F, DAnna F, Giacalone R, Gruttadauria M, Riela S, Noto R. Tetrahedron Lett., 2006, 47: 8105—8108
[39] Camps X, Hirsch A. J. Chem. Soc. Perkin Trans. 1, 1997, 1595—1596
[40] Filippone S, Rassat A. C. R. Chimie, 2003, 6: 83—86
[41] Pospisil L, Hromadova M, Gal M, Bulickova J, Sokolova R, Filippone S, Yang J, Guan Z, Rassat A, Zhang Y. Carbon, 2001, 48: 153—162
[42] Yang J, Wang Y, Rassat A, Zhang Y, Sinay P. Tetrahedron, 2004, 60: 12163—12168
[43] Liu Y, Liang P, Chen Y, Zhao Y L, Ding F, Yu A. J. Phys. Chem. B, 2005, 109: 23739—23744
[44] Zhang Y M, Chen Y, Yang Y, Liu P, Liu Y. Chem. Eur. J., 2009, 15: 11333—11340
[45] Kolb H C, Finn M G, Sharpless K B. Angew. Chem. Int. Ed., 2001, 40: 2004—2021
[46] Quaranta A, Zhang Y, Filippone S, Yang J, Sinay P, Rassat A, Edge R, Navaratnam S, McGarvey D J, Land E J, Brettreich M, Hirsch A, Bensasson R V. Chem. Phys., 2006, 325: 397—403
[47] Szejtli J. Chem. Rev., 1998, 98: 1743—1753
[48] Service R F. Science, 2005, 309: 95

[1] 薛朝鲁门, 刘宛茹, 白图雅, 韩明梅, 莎仁, 詹传郎. 非富勒烯受体DA'D型稠环单元的结构修饰及电池性能研究[J]. 化学进展, 2022, 34(2): 447-459.
[2] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[3] 李霞, 马红艳, 聂晓娟, 刘旭, 卞成明, 谢龙. 星形环糊精聚合物的制备及其应用[J]. 化学进展, 2020, 32(7): 935-942.
[4] 沈赵琪, 程敬招, 张小凤, 黄微雅, 温和瑞, 刘诗咏. P3HT/非富勒烯受体异质结有机太阳电池[J]. 化学进展, 2019, 31(9): 1221-1237.
[5] 马明放, 栾天翔, 邢鹏遥, 李兆楼, 初晓晓, 郝爱友. 基于β-环糊精的有机小分子凝胶[J]. 化学进展, 2019, 31(2/3): 225-235.
[6] 姚阳榕, 谢素原. 碳团簇的结构及其演进[J]. 化学进展, 2019, 31(1): 50-62.
[7] 赵倩, 李盛华, 刘育*. 环糊精超分子凝胶的构筑及其功能[J]. 化学进展, 2018, 30(5): 673-683.
[8] 张双进, 杨扬, 孙小强, 尹芳华, 强琚莉, 王乐勇. 酸碱驱动的分子机器研究与应用[J]. 化学进展, 2016, 28(2/3): 244-259.
[9] 宋成杰, 王二静, 董兵海, 王世敏. 非富勒烯类有机小分子受体材料[J]. 化学进展, 2015, 27(12): 1754-1763.
[10] 沈海民, 武宏科, 史鸿鑫, 纪红兵, 余武斌. 非均相环糊精在水相有机合成反应中的应用[J]. 化学进展, 2015, 27(1): 70-78.
[11] 廖荣强, 刘满朔, 廖霞俐, 杨波. 基于环糊精的智能刺激响应型药物载体[J]. 化学进展, 2015, 27(1): 79-90.
[12] 杨再文, 刘向荣, 赵顺省, 何金梅. 化学驱动的[2]轮烷型分子梭[J]. 化学进展, 2014, 26(12): 1899-1913.
[13] 韩彬, 廖霞俐, 杨波. 基于环糊精的靶向药物传递系统[J]. 化学进展, 2014, 26(06): 1039-1049.
[14] 王光霞, 车延科, 江华. 旋转型单分子机器[J]. 化学进展, 2014, 26(06): 909-918.
[15] 徐妮为, 刘梦艳, 洪诗斌, 颜蔚, 付继芳, 邓维. 基于环糊精构建的基因载体进展[J]. 化学进展, 2014, 26(0203): 375-384.