English
新闻公告
More
化学进展 2010, Vol. 22 Issue (11): 2134-2146 前一篇   后一篇

• 综述与评论 •

过渡金属N-杂环卡宾配合物合成*

刘波 张娜 陈万芝**   

  1. (浙江大学化学系 杭州310028)
  • 收稿日期:2010-03-03 修回日期:2010-04-21 出版日期:2010-11-24 发布日期:2010-10-20
  • 通讯作者: 陈万芝 E-mail:chenwzz@yahoo.com
  • 基金资助:

    国家自然科学基金

Synthesis of Metal N-Heterocyclic Carbene Complexes

Liu Bo  Zhang Na   Chen  Wanzhi**   

  1. (Department of Chemistry, Zhejiang University, Xixi Campus, Hangzhou 310028, China)
  • Received:2010-03-03 Revised:2010-04-21 Online:2010-11-24 Published:2010-10-20
  • Contact: Chen Wanzhi E-mail:chenwzz@yahoo.com

由于N-杂环卡宾配体(NHCs)的独特性能,N-杂环卡宾过渡金属配合物在均相催化等方面取得了重要应用,但是其合成方法却发展缓慢。本文综述了N-杂环卡宾过渡金属配合物合成方法的最新研究进展,介绍了富电子烯烃裂解反应、游离NHC直接配位反应、配体底物的脱质子原位反应、卡宾加合物热解反应、金属交换转移反应和C2-X(X为甲基、卤原子或氢原子)键氧化加成反应等合成N-杂环卡宾过渡金属配合物的主要方法,此外本课题组还首次发现了金属粉末法,该法可用于规模化合成铁、钴、镍、铜等第一过渡系金属NHC配合物。

N-Heterocyclic carbene ligands(NHCs) are playing an increasingly important role in many areas such as organometallic, organic synthetic, pharmaceutical, and polymer chemistry since the discovery of the first N-heterocyclic carbene complexes in 1968 by Öfele and by Wanzlick and the isolation of the first stable free carbene in 1991 by Arduengo III et al. While numerous powerful catalytic systems incorporating NHC ligands have been described, methods of synthesizing them have advanced more slowly. This review describes the recent progress of the methods used in the preparation of N-heterocyclic carbene complexes. According to the nature of the NHC precursor and to the activation method employed, the common routes for preparing NHC–metal complexes are insertion of metal ions into the carbon–carbon double bonds of highly electron-rich alkenes, coordination of preformed, isolated free carbenes, deprotonation of an Imidazolium salt with an external base or with metal complex having a basic ligand, thermal decomposition of corresponding carbene adducts, transmetallation from a silver-NHC complex or from a gold-NHC complex, oxidative addition of the C2-X (X = Me, halogen, H) bond of an imidazolium precursor. In addition, our research group firstly found that Iron, Cobalt, Nickel, and Copper complexes of N-heterocyclic carbenes can be directly synthesized by using commercially available metal powders.

Contents
1 Introduction
2 Synthesis of N-heterocyclic carbene complexes by the cleavage of electron-rich olefins
3 Synthesis of N-heterocyclic carbene complexes from preformed, isolated free carbenes
4 Synthesis of N-heterocyclic carbene complexes by deprotonation of an Imidazolium salt with a base
4.1 Deprotonation with an external base
4.2 Deprotonation with metal complex having a basic ligand
5 Synthesis of N-heterocyclic carbene complexes by thermal decomposition of carbene adducts
5.1 Alcohol adduct of N-heterocyclic carbene
5.2 Triethylborane adduct of N-heterocyclic carbene
5.3 Pentafluorobenzene adduct of N-heterocyclic carbene
5.4 CO2 adduct of N-heterocyclic carbene
5.5 Cyanide adduct of N-heterocyclic carbene
6 Synthesis of N-heterocyclic carbene complexes by transmetallation
6.1 Transmetallation from a silver-NHC complex
6.2 Transmetallation from a gold-NHC complex
7 Synthesis of N-heterocyclic carbene complexes by oxidative addition through activating of the C2-X bond
8 Direct synthesis of N-heterocyclic carbene complex by using metal powders
9 Synthesis of N-heterocyclic carbene complexes by other special methods
9.1 Direct synthesis of N-heterocyclic carbene copper complexes via Cu2O.
9.2 Transmetallation of lithiated heterocycles
9.3 Transmetallation from group VI metal carbonyl carbene complexes
10 Conclusions and Outlook

中图分类号: 

()

[1] fele K J. Organomet. Chem., 1968, 12: 42—43
[2] Wanzlick H W, Schnherr H J. Angew. Chem. Int. Ed. Engl., 1968, 7: 141—142
[3] Arduengo A J, Harlow R L, Kline M. J. Am. Chem. Soc., 1991, 113: 361—363
[4] Glorius F, Rogers M M, Stahl S S, Díez-González S, Nolan S P, Peris E, Gade L H, Bellemin-Laponnaz S, Tekavec T N, Louie J, Despagnet-Ayoub E, Ritter T. N-Heterocyclic Carbenes in Transition Metal Catalysis. Heidelberg: Springer Berlin, 2007. 83—116
[5] Schuster O, Yang L, Raubenheimer H G, Albrecht M. Chem. Rev., 2009, 109: 3445—3478
[6] Lin J C Y, Huang R T W, Lee C S, Bhattacharyya A, Hwang W S, Lin I J B. Chem. Rev., 2009, 109: 3561—3598
[7] Poyatos M, Mata J A, Peris E. Chem. Rev., 2009, 109: 3677—3707
[8] Samojowicz C, Bieniek M, Grela K. Chem. Rev., 2009, 109: 3708—3742
[9] Hindi K M, Panzner M J, Tessier C A, Cannon C L, Youngs W J. Chem. Rev., 2009, 109: 3859—3884
[10] 李林涛(Li L T), 麻生明(Ma S M). 有机化学(Chin. J. Org. Chem.), 2001, 21: 75—81
[11] 柳清湘(Liu Q X), 李正名(Li Z M). 化学通报(Chemistry), 2004, 10: 715—722
[12] 孙小宇(Sun X Y), 吴劼(Wu J). 有机化学(Chin. J. Org. Chem.), 2006, 26: 745—756
[13] 古丽娜(Gu L N), 祝冠彬(Zhu G B), 宋海斌(Song H B), 自国甫(Zi G F). 有机化学(Chin. J. Org. Chem.), 2009, 29(10): 1499—1507
[14] 姜岚(Jiang L), 李争宁(Li Z N), 赵德峰(Zhao D F). 化学进展(Progress in Chemistry), 2009, 21(6): 1229—1240
[15] Cardin D J, Cetinkay B, Lappert M F, Manojlov L, Muir K W. J. Chem. Soc. D, 1971, 400—401
[16] Wanzlick H W, Schikora E. Angew. Chem. 1960, 72: 494—494
[17] zdemir I, Yigit M, Yigit B, etinkaya B, etinkaya E. J. Coord. Chem. 2007, 60: 2377—2384
[18] Yaar S, Dǒgan , zdemir I, Cetinkaya B. Appl. Organomet. Chem., 2008, 22: 314—318
[19] Varnado C D, Lynch V M, Bielawski C W. Dalton Trans., 2009, 7253—7261
[20] Lappert M F, Pye P L. J. Chem. Soc. Dalton Trans., 1977, 2172—2180
[21] Hitchcock P B, Lappert M F, Pye P L. J. Chem. Soc. Dalton Trans., 1978, 826—836
[22] Lappert M F. J. Organomet. Chem., 1988, 358: 185—213
[23] Arnold P L, Rodden M, Wilson C. Chem. Commun., 2005, 1743—1745
[24] Herrmann W A, Schwarz J, Gardiner M G. Organometallics, 1999, 18: 4082—4089
[25] Weskamp T, Schattenmann W C, Spiegler M, Herrmann W A. Angew. Chem. Int. Ed., 1998, 37: 2490—2493
[26] Danopoulos A A, Winston S, Motherwell W B. Chem. Commun., 2002, 1376—1377
[27] Danopoulos A A, Tulloch A A D, Winston S, Eastham G, Hursthouse M B. Dalton Trans., 2003, 1009—1015
[28] McGuinness D S, Gibson V C, Steed J W. Organometallics, 2004, 23: 6288—6292
[29] Danopoulos A A, Tsoureas N, Wright J A, Light M E. Organometallics, 2004, 23:166—168
[30] McGuinness D S, Gibson V C, Wass D F, Steed J W. J. Am. Chem. Soc., 2003, 125: 12716—12717
[31] Luan X, Mariz R, Gatti M, Costabile C, Poater A, Cavallo L, Linden A, Dorta R. J. Am. Chem. Soc., 2008, 130: 6848—6858
[32] Enders D, Gielen H, Raabe G, Runsink J, Teles J H. Chem. Ber., 1996, 129: 1483—1488
[33] Weskamp T, Bhm V P W, Herrmann W A. J. Organomet. Chem., 1999, 585: 348—352
[34] Liu L, Wang F, Shi M. Organometallics, 2009, 28: 4416—4420
[35] Liu Q X, Yin L N, Wu X M, Feng J C, Guo J H, Song H B. Polyhedron, 2008, 27: 87—94
[36] Enders D, Gielen H. J. Organomet. Chem., 2001, 617/618: 70—80
[37] Albrecht M, Miecznikowski J R, Samuel A, Faller J W, Crabtree R H. Organometallics, 2002, 21: 3596—3604
[38] Kong Y, Ren H, Xu S, Song H, Liu B, Wang B. Organometallics, 2009, 28: 5934—5940
[39] Martin H C, James N H, Aitken J, Gaunt J A, Adams H, Haynes A. Organometallics, 2003, 22: 4451—4458
[40] Bittermann A, Baskakov D, Herrmann W A. Organometallics, 2009, 28: 5107—5111
[41] Herrmann W A, Gerstberger G, Spiegler M. Organometallics, 1997, 16: 2209—2212
[42] Liu Y, Wan X, Xu F. Organometallics, 2009, 28: 5590—5592
[43] Chen C, Qiu H, Chen W, Wang D. J. Organomet. Chem., 2008, 693: 3273—3280
[44] Ye J, Zhang X, Chen W, Shimada S. Organometallics, 2008, 27: 4166—4172
[45] Danopoulos A A, Wright J A, Motherwell W B, Ellwood S. Organometallics, 2004, 23: 4807—4810
[46] Zhang J, Yao H, Zhang Y, Sun H, Shen Q. Organometallics, 2008, 27: 2672—2675
[47] Gründemann S, Kovacevic A, Albrecht M, Faller J W, Crabtree R H. Chem. Commun., 2001, 2274—2275
[48] Gründemann S, Kovacevic A, Albrecht M, Faller J W, Crabtree R H. J. Am. Chem. Soc., 2002, 124: 10473—10481
[49] Chianese A R, Kovacevic A, Zeglis B M, Faller J W, Crabtree R H. Organometallics, 2004, 23: 2461—2468
[50] Xie L, Sun H, Hu D, Liu Z, Shen Q, Zhang Y. Polyhedron, 2009, 28: 2585—2590
[51] Kelly R A, Scott N M, Díez-González S, Stevens E D, Nolan S. Organometallics, 2005, 24: 3442—3447
[52] Enders D, Breuer K, Raabe G, Runsink J, Teles J H, Melder J P, Ebel K, Brode S. Angew. Chem. Int. Ed. Engl., 1995, 34: 1021—1023
[53] Scholl M, Ding S, Lee C W, Grubbs R H. Org. Lett., 1999, 1: 953—956
[54] Trnka T M, Morgan J P, Sanford M S, Wilhelm T E, Scholl M, Choi T L, Ding S, Day M W, Grubbs R H. J. Am. Chem. Soc., 2003, 125: 2546—2558
[55] Yamaguchi Y, Kashiwabara T, Ogata K, Miura Y, Nakamura Y, Kobayashi K, Ito T. Chem. Commun., 2004, 2160—2161
[56] Bittermann A, Hrter P, Herdtweck E, Hoffmann S D, Herrmann W A. J. Organomet. Chem., 2008, 693: 2079—2090
[57] Voutchkova A M, Appelhans L N, Chianese A R, Crabtree R H. J. Am. Chem. Soc., 2005, 127: 17624—17625
[58] Voutchkova A M, Feliz M, Clot E, Eisenstein O, Crabtree R H. J. Am. Chem. Soc., 2007, 129: 12834—12846
[59] Wang H M J, Lin I J B. Organometallics, 1998, 17: 972—975
[60] Wan X, Xu F, Li Q, Song H, Zhang Z. Inorg. Chem. Commun., 2005, 8: 1053—1055
[61] Zhang X, Qiu Y, Rao B, Luo M. Organometallics, 2009, 28: 3093—3099
[62] Xi Z, Zhang X, Chen W, Fu S, Wang D. Organometallics, 2007, 26: 6636—6642
[63] Zhou Y, Xi Z, Chen W, Wang D. Organometallics, 2008, 27: 5911—5920
[64] Gu S, Chen W. Organometallics, 2009, 28: 909—914
[65] Liu A, Zhang X, Chen W. Organometallics, 2009, 28: 4868—4871
[66] Zhang X, Xi Z, Liu A, Chen W. Organometallics, 2008, 27: 4401—4406
[67] Ye J, Chen W, Wang D. Dalton Trans., 2008, 4015—4022
[68] Zhang X, Xia Q, Chen W. Dalton Trans., 2009, 7045—7054
[69] Xi Z, Liu B, Lu C, Chen W. Dalton Trans., 2009, 7008—7014
[70] Mathew P, Neels A, Albrecht M. J. Am. Chem. Soc., 2008, 130: 13534—13535
[71] Liu S, Lee C, Fu C, Chen C, Liu Y, Elsevier C J, Peng S, Chen J. Organometallics, 2009, 28: 6957—6962
[72] Gründemann S, Albrecht M, Kovacevic A, Faller J W, Crabtree R H. J. Chem. Soc. Dalton Trans., 2002: 2163—2167
[73] Duin M A, Clement N D, Cavell K J, Elsevier C J. Chem. Commun., 2003, 400—401
[74] Clement N D, Cavell K J, Jones C, Elsevier C J. Angew. Chem. Int. Ed., 2004, 43: 1277—1279
[75] Bacciu D, Cavell K J, Fallis I A, Ooi L. Angew. Chem. Int. Ed., 2005, 44: 5282—5284
[76] Viciano M, Poyatos M, Sanaú M, Peris E, Rossin A, Ujaque G, Lledós A. Organometallics, 2006, 25: 1120—1134
[77] Mas-Marzá E, Sanaú M, Peris E. Inorg. Chem., 2005, 44: 9961—9967
[78] Liu Z, Zhang T, Shi M. Organometallics, 2008, 27: 2668—2671
[79] Fürstner A, Seidel G, Kremzow D, Lehmann C W. Organometallics, 2003, 22: 907—909
[80] McGuinness D S, Cavell K J, Yates B F, Skelton B W, White A H. J. Am. Chem. Soc., 2001, 123: 8317—8328
[81] Cavell K J, McGuinness D S. Coord. Chem. Rev., 2004, 248: 671—681
[82] Liu B, Xia Q, Chen W. Angew. Chem. Int. Ed., 2009, 48: 5513—5516
[83] Liu B, Liu B, Zhou Y, Chen W. Organometallics, 2010, 29: 1457—1464
[84] Tulloch A A D, Danopoulos A A, Kleinhenz S, Light M E, Hursthouse M B, Eastham G. Organometallics, 2001, 20: 2027—2031
[85] Raubenheimer H G, Cronje S. J. Organomet. Chem., 2001, 617: 170—181
[86] Fischer E O, Beck H J. Angew. Chem. Int. Ed. Engl., 1970, 9: 72—73
[87] Liu S, Hsieh T, Lee G, Peng S. Organometallics, 1998, 17: 993—995
[88] Ku R, Huang J, Cho J, Kiang F, Reddy K R, Chen Y, Lee K, Lee J, Lee G, Peng S, Liu S. Organometallics, 1999, 18: 2145—2154
[89] Chang Y, Fu C, Liu Y, Peng S, Chen J, Liu S. Dalton Trans., 2009, 861—867
[90] Fu C, Chang Y, Liu Y, Peng S, Elsevier C J, Chen J, Liu S. Dalton Trans., 2009, 6991—6998

[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[3] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[4] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[5] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[6] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[7] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[8] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[9] 林业竣, 李艳梅. 翻译后修饰Tau蛋白及其化学全/半合成[J]. 化学进展, 2022, 34(8): 1645-1660.
[10] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[11] 王鹏, 刘欢, 杨妲. 烯烃的氢甲酰化串联反应研究[J]. 化学进展, 2022, 34(5): 1076-1087.
[12] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[13] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[14] 赵聪媛, 张静, 陈铮, 李建, 舒烈琳, 纪晓亮. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用[J]. 化学进展, 2022, 34(2): 397-410.
[15] 王亚奇, 吴强, 陈俊玲, 梁峰. 狄尔斯-阿尔德反应催化剂[J]. 化学进展, 2022, 34(2): 474-486.
阅读次数
全文


摘要

过渡金属N-杂环卡宾配合物合成*