English
新闻公告
More
化学进展 2010, Vol. 22 Issue (11): 2119-2125 前一篇   后一篇

• 综述与评论 •

各种形貌的纳米Co3O4的制备及其应用*

李艳华1,2  黄可龙1**   曾冬铭1   刘素琴1   

  1. (1. 中南大学化学化工学院  长沙 410083;2. 长沙航空职业技术学院化工与环保系 410014)
  • 收稿日期:2010-02-09 修回日期:2010-04-24 出版日期:2010-11-24 发布日期:2010-10-20
  • 通讯作者: 黄可龙 E-mail:klhuang@mail.csu.edu.cn
  • 基金资助:

    国家自然科学基金

Preparation and Application of Co3O4 Nanostructures with Various Morphologies

Li Yanhua1,2  Huang Kelong1**  Zeng Dongming1  Liu Suqin1   

  1. (1.College of Chemistry and Chemical Engineering,Central South University,Changsha 410083,China;2.Department of Chemical Engineering and Environmrntal Protection,Changsha Aeronautical Vocational and Technical College,Changsha 410014,China)
  • Received:2010-02-09 Revised:2010-04-24 Online:2010-11-24 Published:2010-10-20
  • Contact: Huang Kelong E-mail:klhuang@mail.csu.edu.cn

本文综述了各种形貌的纳米Co3O4的制备及其应用。制备纳米Co3O4的方法有很多,包括热分解、水热法、溶剂热法、化学喷雾热分解、化学气相沉积和溶胶-凝胶法。各种形貌的Co3O4被制备,如纳米球、纳米立方体、纳米管、纳米棒、纳米片、纳米纤维和介孔结构。Co3O4是一种重要的磁性P-型半导体,在锂离子电池、超级电容器、电致变色、磁性材料、气体传感器和催化剂等诸多领域有比较广泛的应用。

This review presents current research activities concerning preparation and application of Co3O4 nanoparticles with various morphologies. The Co3O4 nanostructures are synthesized with various methodes, including thermal deposition, hydrothermal method, solvothermal method, chemical spray pyrolysis, chemical vapor deposition, and sol–gel methods. These methods result in various morphologies such as nanospheres, nanocubes, nanotubes, nanorods, nanaoplates nanofibers, and mesoporous structures. As an important magnetic p-type semiconductor, Co3O4 is often used in the fields of lithium batteries, supercapacitors, electrochromic devices, magnetic materials, gas sensors, and catalysts.

Contents
1 Introduction
2 Preparation of Co3O4 nanostructures
2.1 Thermal deposition
2.2 Hydrothermal method
2.3 Solvothermal method
2.4 Sol–gel method
3 Application of Co3O4 nanostructures
3.1 Lithium batteries
3.2 Supercapacitors
3.3 Magnetic materials
3.4 Electrochromic devices
3.5 Gas sensors
3.6 Catalysts
4 Conclusions and Outlook

中图分类号: 

()

[1] Liu Y, Mi C H, Su L H, Zhang X G. Electrochim. Acta, 2008, 53: 2507—2513
[2] Zhang H, Wu J B, Zhai C X, Ma X Y, Du N, Tu J P, Yang D R. Nanotechnology, 2008, 19: art. no. 035711
[3] Shaju K M, Jiao F, Debart A, Bruce P G. Phys. Chem. Chem. Phys., 2007, 9: 1837—1842
[4] Gao Y Y, Chen S L, Cao D X, Wang G L, Yin J L. J. Power Sources, 2010, 195: 1757—1760
[5] Cui L, Li J, Zhang X G. J. Appl. Electrochem., 2009, 39: 1871—1876
[6] Zheng M B, Cao J, Liao S T, Liu J S, Chen H Q, Zhao Y, Dai W J, Ji G B, Cao J M, Tao J. J. Phys. Chem. C, 2009, 113: 3887—3894
[7] Lin C, Ritter J A, Popov B N. J. Electrochem. Soc., 1998, 145: 4097—4103
[8] Xia X H, Tu J P, Zhang J, Huang X H, Wang X L, Zhang W K, Huang H. Electrochem. Commun., 2008, 10: 1815—1818
[9] Shim H S, Shinde V R, Kim H J, Sung Y E, Kim W B. Thin Solid Films, 2008, 516: 8573—8578
[10] Zhang Y, Chen Y, Wang T, Zhou J, Zhao Y. Microporous Mesoporous Mater., 2008, 114: 257—261
[11] Shen X P, Miao H J, Zhao H, Xu Z. Appl. Phys. A, 2008, 91: 47—51
[12] Benitez M J, Petracic O, Salabas E L, Radu F, Tuysuz H, Schuth F, Zabel H. Phys. Rev. Lett., 2008, 101: art. no. 097206
[13] Geng B Y, Zhan F M, Fang C H, Yu N. J. Mater. Chem., 2008, 18: 4977—4984
[14] Cao A M, Hu J S, Liang H P, Song W G, Wan L J, He X L, Gao X G, Xia S H. J. Phys. Chem. B, 2006, 110: 15858—15863
[15] Tüysüz H, Comotti M, Schüth F. Chem. Commun., 2008, 4022—4024
[16] Chen Y C, Hu L, Wang M, Min Y L, Zhang Y G. Colloids Surf. A, 2009, 336: 64—68
[17] Xie X, Li Y, Liu Z Q, Haruta M, Shen W. Nature, 2009, 458: 746—749
[18] He T, Chen D, Jiao X. Chem. Mater., 2004, 16: 737—743
[19] Shi X, Han S, Sanedrin R J, Galvez C, Ho D G, Hernandez B, Zhou F, Selke M. Nano Lett., 2002, 2: 289—293
[20] Liang H Y, Raitano J M, Zhang L H, Chan S W. Chem. Commun., 2009, 7569—7571
[21] Teng F, Yao W, Zheng Y, Ma Y, Xu T, Gao G, Liang S, Teng Y, Zhu Y. Talanta, 2008, 76: 1058—1064
[22] Shu P, Ruan J F, Gao C B, Li H C, Che S N. Microporous Mesoporous Mater., 2009, 123: 314—323
[23] Rumplecker A, Kleitz F, Salabas E L, Schüth F. Chem. Mater., 2007, 19: 485—496
[24] 张卫民(Zhang W M), 张玉(Zhang Y), 董光明(Dong G M), 孙中溪(Sun Z X). 高等学校化学学报(Chemical Journal of Chinese Universities), 2006, 27: 1791—1794
[25] 张卫民(Zhang W M), 孙思修(Sun S X), 俞海云(Yu H Y), 宋新宇(Song X Y). 高等学校化学学报(Chemical Journal of Chinese Universities), 2003, 24: 2151—2154
[26] 刘冬梅(Liu D L), 赵海军(Zhao H J), 曹洁明(Cao J M), 郑明波(Zheng M B), 刘劲松(Liu J S). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2008, 24: 636—640
[27] Guan X F, Li G S, Zhou L H, Li L P, Qiu X Q. Chem. Lett., 2009, 38: 280—281
[28] Xu R, Wang J W, Li Q Y, Sun G Y, Wang E B, Li S H, Gu J M, Ju M L. J. Solid State Chem., 2009, 182: 3177—3182
[29] Ahmed J, Ahmad T, Ramanujachary K V, Lofland S E, Ganguli A K. J. Colloid Interface Sci., 2008, 321: 434—441
[30] Xiong S L, Yuan C Z, Zhang M F, Xi B J, Qian Y T. Chem. Eur. J., 2009, 15: 5320—5326
[31] 刘先红(Liu X H), 李德炳(Li D B), 范文青(Fan W Q), 张庆红(Zhang Q H), 王野(Wang Y), 万惠霖(Wan H L). 厦门大学学报(Journal of Xiamen University), 2009, 48: 773—779
[32] Li L L, Chu Y, Liu Y, Song J L, Wang D, Du X W. Mater. Lett., 2008, 62: 1507—1510
[33] Liu X, Qiu G, Li X. Nanotechnology, 2005, 16: 3035—3040
[34] Sun L, Li H, Ren L, Hu C. Solid State Sciences, 2009, 11: 108—112
[35] Zhuo L H, Ge J C, Cao L H, Tang B. Cryst. Growth Des., 2009, 9: 1—6
[36] vegl F, Orel B, Grabec-vegl I, Kau i V. Electrochim. Acta, 2000, 45: 4359—4371
[37] Guan H, Shao C, Wen S, Chen B, Gong J, Yang X. Mater. Chem. Phys., 2003, 82: 1002—1006
[38] Gu Y, Jian F, Wang X. Thin Solid Films, 2008, 517: 652—655
[39] Thota S, Kumar A, Kumar J. Mater. Sci. Eng. B, 2009, 164: 30—37
[40] Li Y G, Tan B, Wu Y Y. Nano Lett., 2008, 8: 265—270
[41] Lou X W, Deng D, Lee J Y, Archer L A. J. Mater. Chem., 2008, 18: 4397—4401
[42] Du N, Zhang H, Chen B, Wu J B, Ma X Y, Liu Z H, Zhang Y Q, Yang D, Huang X H, Tu J P. Adv. Mater., 2007, 19: 4505—4509
[43] Wang G, Shen X, Yao J, Wexler D, Ahn J H. Electrochem. Commun., 2009, 11: 546—549
[44] Li W Y, Xu L N, Chen J. Adv. Funct. Mater., 2005, 15: 851—857
[45] Wang Y, Fu Z W, Qin Q Z. Thin Solid Films, 2003, 441: 19—24
[46] Chou S L, Wang J Z, Liu H K, Dou S X. J. Power Sources, 2008, 182: 359—364
[47] 叶向果(Ye X G), 张校刚(Zhang X G), 米红宇(Mi H Y), 杨苏东(Yang S D). 物理化学学报(Acta Chimica Sinica), 2008, 24: 1105—1110
[48] 黄可龙(Huang K L), 曾雯雯(Zeng W W), 杨幼平(Yang Y P), 刘素琴(Liu S Q), 刘人生(Li R S). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2007, 23: 1555—1560
[49] 郑明波(Zheng M B), 凌宗欣(Ling Z X), 廖书田(Liao S T), 杨振江(Yang Z J), 姬广斌(Ji G B), 曹洁明(Cao J M), 陶杰(Tao J). 化学学报(Acta Chimica Sinica), 2009, 67: 1069—1074
[50] Cao L, Lu M, Li H L. J. Electrochem. Soc., 2005, 152: A871—A875
[51] 曹林(Cao L), 周盈科(Zhou Y K), 陆梅(Lu M), 力虎林(Li H L). 科学通报(Chinese Science Bulletin), 2003, 24: 668—670
[52] 吴雯(Wu W), 王永刚(Wang Y G), 李峰(Li F), 夏永姚(Xia Y Y). 化学学报(Acta Chimica Sinica), 2009, 67: 208—212
[53] Shinde V R, Mahadik S B, Gujar T P, Lokhande C D. Appl. Surf. Sci., 2006, 252: 7487—7492
[54] Ahn H J, Seong T Y. J. Alloys Compd., 2009, 478: L8—L11

[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[3] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[4] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[5] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[6] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[7] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[8] 赵筱茜, 王聪, 田勇, 王秀芳. 微乳液法制备介孔碳材料[J]. 化学进展, 2022, 34(10): 2316-2328.
[9] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[10] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[11] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[12] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[13] 陈立忠, 龚巧彬, 陈哲. 超薄二维MOF纳米材料的制备和应用[J]. 化学进展, 2021, 33(8): 1280-1292.
[14] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[15] 唐向春, 陈家祥, 刘利娜, 廖世军. 具有三维特殊形貌/纳米结构的Pt基电催化剂[J]. 化学进展, 2021, 33(7): 1238-1248.