English
新闻公告
More
化学进展 2010, Vol. 22 Issue (11): 2106-2118 前一篇   后一篇

• 综述与评论 •

石墨烯基无机纳米复合材料*

柏嵩  沈小平**   

  1. (江苏大学化学化工学院 镇江212013)
  • 收稿日期:2010-03-03 修回日期:2010-04-26 出版日期:2010-11-24 发布日期:2010-10-20
  • 通讯作者: 沈小平 E-mail:xiaopingshen@163.com
  • 基金资助:

    江苏省自然科学基金;江苏大学高级人才基金

Graphene-based Inorganic Nanocomposites

Bai Song  Shen Xiaoping**   

  1. (School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212003, China)
  • Received:2010-03-03 Revised:2010-04-26 Online:2010-11-24 Published:2010-10-20
  • Contact: Shen Xiaoping E-mail:xiaopingshen@163.com

石墨烯(graphene)是近年被发现和合成的一种新型二维平面纳米碳质材料。由于其新奇的物理和化学性质,石墨烯已经成为了备受瞩目的科学新星,是纳米材料领域的一大研究热点。在石墨烯的研究中,基于石墨烯的无机纳米复合材料是石墨烯迈向实际应用的一个重要方向。本文在简要介绍石墨烯的结构、性质和制备方法的基础上,重点就近年来以石墨烯为基体的无机物(主要包括金属和半导体)纳米复合材料的合成和应用作一述评,并对石墨烯基无机纳米复合材料的研究和发展方向作了展望。

In past few years, we have witnessed the discovery and synthesis of graphene — a kind of ideal two-dimensional flat carbon nanomaterials. Owing to its novel and unique physical and chemical properties, graphene has been attracting more and more attention from scientific community and nowadays has become a sparkling rising star on the horizon of nanomaterials science. The graphene-based inorganic nanocomposites, derived from the decoration of graphene sheets with inorganic nanoparticles, are emerging as a new class of exciting materials that hold promise for many applications. So far, numerous inorganic nanocomposites based on graphene have been successfully synthesized and show desirable combinations of these properties that are not found in the individual components. Herein, we briefly introduce the structure, properties and preparation methods of graphene, and then highlight the advance in the synthesis of inorganic nanomaterials/graphene composites, especially focusing on the metal/graphene and semiconductor/graphene nanocomposites. The potential applications of these nanocomposites are also discussed. These results underscore the exciting opportunities of developing next-generation graphene-based inorganic nanocomposites.

Contents
1 Introduction
2 Preparation of graphene
3 Metal/graphene nanocomposites
3.1 Composites of graphene sheets and platinum metals
3.2 Composites of graphene sheets and silver
3.3 Composites of graphene sheets and gold
3.4 Composites of graphene sheets and other metal
4 Semiconductor/graphene nanocomposites
4.1 Composites of graphene sheets and titanium dioxide
4.2 Composites of graphene sheets and cobalt oxide
4.3 Composites of graphene sheets and tin oxide
4.4 Composites of graphene sheets and zinc oxide
4.5 Composites of graphene sheets and sulfide semiconductor
4.6 Composites of graphene sheets and other semiconductor
5 Graphene/ceramic nanocomposites
6 Graphene-based magnetic nanocomposites
7 Carbon/graphene nanocomposites
8 Conclusions and outlook

中图分类号: 

()

[1] Geim A K, Novoselov K S. Nat. Mater., 2007, 6: 183—191
[2] Van Noorden R. Nature, 2006, 442: 228—229
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306: 666—669
[4] Jiao L Y, Zhang L, Wang X R, Diankov G, Dai H J. Nature, 2009, 458: 877—880
[5] Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M. Nature, 2009, 458: 872—877
[6] Wang S, Tang L A L, Bao Q L, Lin M, Deng S, Goh B M, Loh K P. J. Am. Chem. Soc., 2009, 131: 16832—16837
[7] Lee C G, Wei X D, Kysar J W, Hone J. Science, 2008, 321: 385—388
[8] Stoller M D, Park S J, Zhu Y W, An J H, Ruoff R S. Nano Lett., 2008, 8: 3498—3502
[9] Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N. Nano Lett., 2008, 8: 902—907
[10] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L. Solid State Commun., 2008, 146: 351—355
[11] Zhang Y B, Tan Y W, Stormer H L, Kim P. Nature, 2005, 438: 201—204
[12] Novoselov K S, McCann E, Morozov S V, Falko V I, Katsnelson M I, Zeitler U, Jiang D, Schedin F, Geim A K. Nat. Phys., 2006, 2: 177—180
[13] Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K. Science, 2007, 315: 1379—1379
[14] Katsnelson M I, Novoselov K S, Geim A K. Nat. Phys., 2006, 2: 620—625
[15] Heersche H B, Jarillo-Herrero P, Oostinga J B, Vandersypen L M K, Morpurgo A F. Nature, 2007, 446: 56—59
[16] Wang G X, Shen X P, Yao J, Park J. Carbon, 2009, 47: 2049—2053
[17] 徐秀娟(Xu X J), 秦金贵(Qin J G), 李振(Li Z). 化学进展(Progress in Chemistry), 2009, 21(12): 2559—2567
[18] 傅强(Fu Q), 包信和(Bao X H). 科学通报(Chinese Science Bulletin), 2009, 54(18): 2657―2666
[19] 黄毅(Huang Y), 陈永胜(Chen Y S). 中国科学B辑(Science in China, Series B), 2009, 39(9): 887—896
[20] 杨全红(Yang Q H), 吕伟(Lv W), 杨永岗(Yang Y G), 王茂章(Wang M Z). 新型炭材料(New Carbon Materials), 2008, 23(2): 97—103
[21] 李旭(Li X), 赵卫峰(Zhao W F), 陈国华(Chen G H). 材料导报(Materials Review), 2008, 22(8): 48—52
[22] Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Nature, 2006, 442: 282—286
[23] Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A. Science, 2006, 312: 1191—1196
[24] Berger C, Song Z M, Li T B, Li X B, Ogbazghi A Y, Feng R, Dai Z T, Marchenkov A N, Conrad E H, First P N, de Heer W A. J. Phys. Chem. B, 2004, 108: 19912—19916
[25] De Heer W A, Berger C, Wu X S, First P N, Conrad E H, Li X B, Li T B, Sprinkle M, Hass J, Sadowski M L, Potemski M, Martinez G. Solid State Commun., 2007, 143: 92—100
[26] Sutter P W, Flege J I, Sutter E A. Nat. Mater., 2008, 7: 406—411
[27] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H. Nature, 2009, 457: 706—710
[28] Reina A, Jia X T, Ho J, Nezich D, Son H B, Bulovic V, Dresselhaus M S, Kong J. Nano Lett., 2009, 9: 30—35
[29] Stankovich S, Piner R D, Chen X Q, Wu N Q, Nguyen S B T, Ruoff R S. J. Mater. Chem., 2006, 16: 155—158
[30] Stankovich S, Piner R D, Nguyen S B T, Ruoff R S. Carbon, 2006, 44: 3342—3347
[31] Li D, Muller M B, Gilje S, Kaner R B, Wallace G G. Nat. Nanotechnol., 2008, 3: 101—105
[32] Park S, Ruoff R S. Nat. Nanotechnol., 2009, 4: 217—224
[33] Buchsteiner A, Lerf A, Pieper J. J. Phys. Chem. B, 2006, 110: 22328—22338
[34] Brodie B C. Philos. Trans. R. Soc. London, 1859, 149: 249—259
[35] Staudenmaier L. Ber. Dtsch. Chem. Ges., 1898, 31: 1481—1487
[36] Hummers W S, Offeman R E. J. Am. Chem. Soc., 1958, 80: 1339—1339
[37] 傅玲(Fu L), 刘洪波(Liu H B), 邹艳红(Zou Y H), 李波(Li B). 炭素(Carbon), 2005, 10—14
[38] 杨永岗(Yang Y G), 陈成猛(Chen C M), 温月芳(Wen Y F), 杨全红(Yang Q H), 王茂章(Wang M Z). 新型炭材料(New Carbon Materials), 2008, 23(3): 193—200
[39] Wu J L, Shen X P, Jiang L, Wang K, Chen K M. Appl. Surf. Sci., 2010, 256: 2826—2830
[40] Pasricha R, Gupta S, Srivastava A K. Small, 2009, 5: 2253—2259
[41] Goncalves G, Marques P A A P, Granadeiro C M, Nogueira H I S, Singh M K, Gracio J. Chem. Mater., 2009, 21: 4796—4802
[42] Wang G X, Yang J, Park J, Gou X L, Wang B, Liu H, Yao J. J. Phys. Chem. C, 2008, 112: 8192—8195
[43] Ryan M, Seger B, Kamat P V. J. Phys. Chem. C, 2008, 112: 5263—5266
[44] Seger B, Kamat P V. J. Phys. Chem. C, 2009, 113: 7990—7995
[45] Wang G X, Wang B, Wang X L, Park J, Dou S X, Ahn H J, Kim K. J. Mater. Chem., 2009, 19: 8378—8384
[46] McAllister M J, Li J L, Adamson D H, Schniepp H C, Abdala A A, Liu J, Herrera-Alonso M, Milius D L, Car R, Prudhomme R K, Aksay I A. Chem. Mater., 2007, 19: 4396—4404
[47] Williams G, Seger B, Kamat P V. ACS Nano, 2008, 2: 1487—1491
[48] Williams G, Kamat P V. Langmuir, 2009, 25: 13869—13873
[49] Hassan H M A, Abdelsayed V, Khder A E R S, AbouZeid K M, Terner J, El-Shall M S, Al-Resayes S I, El-Azhary A A. J. Mater. Chem., 2009, 19: 3832—3837
[50] Murugan A V, Muraliganth T, Manthiram A. Chem. Mater., 2009, 21: 5004—5006
[51] Wang G X, Shen X P, Wang B, Yao J, Park J. Carbon, 2009, 47: 1359—1364
[52] Si Y C, Samulski E T. Chem. Mater., 2008, 20: 6792—6797
[53] Kou R, Shao Y Y, Wang D H, Engelhard M H, Kwak J H, Wang J, Viswanathan V V, Wang C M, Lin Y H, Wang Y, Aksay I A, Liu J. Electrochem. Commun., 2009, 11: 954—957
[54] Li Y M, Tang L H, Li J H. Electrochem. Commun., 2009, 11: 846—849
[55] Yoo E J, Okata T, Akita T, Kohyama M, Nakamura J J, Honma I. Nano Lett., 2009, 9: 2255—2259
[56] Dong L F, Gari R R S, Li Z, Craig M M, Hou S F. Carbon, 2010, 48: 781—787
[57] Xu C, Wang X, Zhu J W. J. Phys. Chem. C, 2008, 112: 19841—19845
[58] Scheuermann G M, Rumi L, Steurer P, Bannwarth W, Mülhaupt R. J. Am. Chem. Soc., 2009, 131: 8262—8270
[59] Guo S J, Dong S J, Wang E W. ACS Nano, 2010, 4: 547—555
[60] Xu C, Wang X. Small, 2009, 5: 2212—2217
[61] Zhou X Z, Huang X, Qi X Y, Wu S X, Xue C, Boey F Y C, Yan Q Y, Chen P, Zhang H. J. Phys. Chem. C, 2009, 113: 10842—10846
[62] Shen J F, Shi M, Li N, Yan B, Ma H W, Hu Y Z, Ye M X. Nano Res., 2010, 3: 339—349
[63] Kong B S, Geng J X, Jung H T. Chem. Commun., 2009, 2174—2176
[64] Li F H, Yang H F, Shan C S, Zhang Q X, Han D X, Ivaska A, Niu L. J. Mater. Chem., 2009, 19: 4022—4025
[65] Hong W J, Bai H, Xu Y X, Yao Z Y, Gu Z Z, Shi G Q. J. Phys. Chem. C, 2010, 114: 1822—1826
[66] Zhou H Q, Qiu C Y, Liu Z, Yang H C, Hu L J, Liu J, Yang H F, Gu C Z, Sun L F. J. Am. Chem. Soc., 2010, 132: 944—946
[67] Lu Y H, Zhou M, Zhang C, Feng Y P. J. Phys. Chem. C, 2009, 113: 20156—20160
[68] Luechinger N A, Booth N, Heness G, Bandyopadhyay S, Grass R N, Stark W J. Adv. Mater., 2009, 20: 3044—3049
[69] Warner J H, Rümmeli M H, Bachmatiuk A, Wilson M, Büchner B. ACS Nano, 2010, 4: 470—476
[70] Ao Z M, Yang J, Li S, Jiang Q. Chem. Phys. Lett., 2008, 461: 276—279
[71] Kim G, Jhi S H. J. Phys. Chem. C, 2009, 113: 20499—20503
[72] Liang M H, Zhi L J. J. Mater. Chem., 2009, 19: 5871—5878
[73] Lightcap I V, Kosel T H, Kamat P V. Nano Lett., 2010, 10: 577—583
[74] Lambert T N, Chavez C A, Hernandez-Sanchez B, Lu P, Bell N S, Ambrosini A, Friedman T, Boyle T J, Wheeler D R, Huber D L. J. Phys. Chem. C, 2009, 113: 19812—19823
[75] Wang D H, Choi D W, Li J, Yang Z G, Nie Z M, Kou R, Hu D H, Wang C M, Saraf L V, Zhang J G, Aksay I A, Liu J. ACS Nano, 2009, 3: 907—914
[76] Peng W Q, Wang Z M, Yoshizawa N, Hatori H, Hirotsu T. Chem. Commun., 2008, 4348—4350
[77] 张晓艳(Zhang X Y), 李浩鹏(Li H P), 崔晓莉(Cui X L). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2009, 25(11): 1903—1907
[78] Zhang H, Lv X J, Li Y M, Wang Y, Li J H. ACS Nano, 2010, 4: 380—386
[79] Xu C, Wang X, Zhu J W, Yang X J, Lu L. J. Mater. Chem., 2008, 18: 5625—5629
[80] Yang S B, Cui G L, Pang S P, Cao Q, Kolb U, Feng X L, Maier J, Müllen K. ChemSusChem, 2010, 3: 236—239
[81] Paek S M, Yoo E J, Honma I. Nano Lett., 2009, 9: 72—75
[82] Li F H, Song J F, Yang H F, Gan S Y, Zhang Q X, Han D X, Ivaska A, Niu L. Nanotechnology, 2009, 20: art. no. 455602
[83] Yao J, Shen X P, Wang B, Liu H K, Wang G X. Electrochem. Commun., 2009, 11: 1849—1852
[84] Zhang Y P, Li H B, Pan L K, Lu T, Sun Z. J. Electroanal. Chem., 2009, 634: 68—71
[85] Zheng W T, Ho Y M, Tian H W, Wen M, Qi J L, Li Y A. J. Phys. Chem. C, 2009, 113: 9164—9168
[86] Lee J M, Pyun Y B, Yi J, Choung J W, Park W I. J. Phys. Chem. C, 2009, 113: 19134—19138
[87] Nethravathi C, Nisha T, Ravishankar N, Shivakumara C, Rajamathi M. Carbon, 2009, 47: 2054—2059
[88] Nethravathi C, Rajamathi J T, Ravishankar N, Shivakumara C, Rajamathi M. Langmuir, 2008, 24: 8240—8244
[89] Nethravathi C, Viswanath B, Shivakumara C, Mahadevaiah N, Rajamathi M. Carbon, 2008, 46: 1773—1781
[90] Cao A N, Liu Z, Chu S S, Wu M H, Ye Z M, Cai Z W, Chang Y L, Wang S F, Gong Q H, Liu Y F. Adv. Mater., 2009, 21: 103—106
[91] Guo C X, Yang H B, Sheng Z M, Lu Z S, Song Q L, Li C M. Angew. Chem. Int. Ed., 2010, 49: 3014—3017
[92] Ding Y H, Jiang Y, Xu F, Yin J, Ren H, Zhuo Q, Long Z, Zhang P. Electrochem. Commun., 2010, 12: 10—13
[93] Chou S L, Wang J Z, Choucair M, Liu H K, Stride J A, Dou S X. Electrochem. Commun., 2009, 12: 303—306
[94] Watcharotone S, Dikin D A, Stankovich S, Piner R, Jung I, Dommett G H B, Evmenenko G, Wu S E, Chen S F, Liu C P, Nguyen S T, Ruoff R S. Nano Lett., 2007, 7: 1888—1892
[95] Ji F, Li Y L, Feng J M, Su D, Wen Y Y, Feng Y, Hou F. J. Mater. Chem., 2009, 19: 9603—9607
[96] Wang X R, Tabakman S M, Dai H J. J. Am. Chem. Soc., 2008, 130: 8152—8153
[97] Fan Y C, Wang L J, Li J L, Li J Q, Sun S K, Chen F, Chen L D, Jiang W. Carbon, 2010, 48: 1743—1749
[98] Yang X Y, Zhang X Y, Ma Y F, Huang Y, Wang Y S, Chen Y S. J. Mater. Chem., 2009, 19: 2710—2714
[99] Singh V K, Patra M K, Manoth M, Gowd G S, Vadera S R, Kumar N. New Carbon Materials, 2009, 24: 147—152
[100] Shen J F, Hu Y Z, Shi M, Li N, Ma H W, Ye M X. J. Phys. Chem. C, 2010, 114: 1498—1503
[101] Cong H P, He J J, Lu Y, Yu S H. Small, 2010, 6: 169—173
[102] Cai D Y, Song M, Xu C X. Adv. Mater., 2008, 20: 1706—1709
[103] Tung V C, Chen L M, Allen M J, Wassei J K, Nelson K, Kaner R B, Yang Y. Nano Lett., 2009, 9: 1949—1955
[104] Yoo E J, Kim J, Hosono E, Zhou H S, Kudo T, Honma I. Nano Lett., 2008, 8: 2277—2282
[105] Wu X J, Zeng X C. Nano Lett., 2009, 9: 250—256
[106] Zhang X Y, Huang Y, Wang Y, Ma Y F, Liu Z F, Chen Y S. Carbon, 2009, 47: 334—337
[107] Xu Y F, Liu Z B, Zhang X L, Wang Y, Tian J G, Huang Y, Ma Y F, Zhang X Y, Chen Y S. Adv. Mater., 2009, 21: 1275—1279
[108] Liu Z B, Xu Y F, Zhang X Y, Zhang X L, Chen Y S, Tian J G. J. Phys. Chem. B, 2009, 113: 9681—9686
[109] Zhang X Y, Liu Z B, Huang Y, Wan X J, Tian J G, Ma Y F, Chen Y S. J. Nanosci. Nanotech., 2009, 9: 5752—5756
[110] Yan J, Wei T, Shao B, Ma F Q, Fan Z J, Zhang M L, Zheng C, Shang Y C, Qian W Z, Wei F. Carbon, 2010, 48: 1731—1737

[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[3] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[6] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[7] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[8] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[9] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[10] 赵晓竹, 李雯, 赵学瑞, 何乃普, 李超, 张学辉. MOFs在乳液中的可控生长[J]. 化学进展, 2023, 35(1): 157-167.
[11] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[12] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[13] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[14] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[15] 林业竣, 李艳梅. 翻译后修饰Tau蛋白及其化学全/半合成[J]. 化学进展, 2022, 34(8): 1645-1660.
阅读次数
全文


摘要

石墨烯基无机纳米复合材料*