English
新闻公告
More
化学进展 2010, Vol. 22 Issue (11): 2089-2098 前一篇   后一篇

所属专题: 金属有机框架材料

• 综述与评论 •

MOF基上创立活性位的方法及其催化应用*

刘丽丽   张鑫**  徐春明**   

  1. (中国石油大学 重质油国家重点实验室  北京  102249)
  • 收稿日期:2010-03-22 修回日期:2010-05-11 出版日期:2010-11-24 发布日期:2010-10-20
  • 通讯作者: 张鑫 E-mail:zhangxin@cup.edu.cn
  • 基金资助:

    国家自然科学基金;新世纪优秀人才支持计划

Methods of Creating Active sites in MOF and Catalytic Explorations

liu lili   zhang Xin**   Xu Chunming**   

  1. (State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing Changping, 102249)
  • Received:2010-03-22 Revised:2010-05-11 Online:2010-11-24 Published:2010-10-20
  • Contact: zhang Xin E-mail:zhangxin@cup.edu.cn

近年来金属有机骨架(MOF)以其独特的结构特点(高比表面积、织构性质可调以及暴露的金属离子可以100%利用)引起了催化学者的极大重视,本文评述了与传统催化材料(如分子筛)相比,金属有机骨架作为催化材料的优点与不足,针对多数MOF中处于节点的金属离子被配体配位饱和而不具备催化活性这一弊端,本文基于对这一问题的最新研究进展总结了在MOF上创立催化活性位的4种方法:即前合成法、后合成共价修饰法、浸渍法以及沉淀法,讨论了这4种方法各自的优缺点,并详细介绍了这些方法在催化反应中的探索和应用,指出了MOF在催化领域需要重视的问题和未来的研究方向,以期对MOF在催化领域的研究和开发提供参考。

Due to its unique structural characteristics (the high specific surface area, tailoring structure properties and 100% utilization of exposed metal ions), metal organic framework (MOF) materials have drawn great attention on catalysis in recent years. However, the drawbacks of no open metal ions and poor thermal stability limit their application in catalysis. This tutorial review presents recent developments of the emerging field of MOF based catalysis. We summarize four distinct strategies: pre-synthesis method, post-synthesis modification, impregnation method and precipitation method, which have been utilized to create catalytic active sites in MOF. Examples of the catalytic reactions based on the created active sites in the MOF are then followed. It has been shown that the pre-synthesis method has been widely used in creating catalytic active sites in the MOF. MOF with active sites created by the pre-synthesis and the post-synthesis modification method in the MOF may act as “shape selective catalysis” as zeolite. Usually as a Lewis acid catalyst, MOFs are capable of being very active for many reactions, especially at temperatures below 100 oC. A critical comment on these methods and catalytic explorations has been addressed in order to guide the newcomer to this field.

 Contents
1 Introduction
2 The method of creating active sites in MOF and its application in catalysis
2.1 Pre-synthesis method and catalytic explorations
2.2 Post-synthesis modification and catalytic explorations
2.3 Impregnation method and catalytic explorations
2.4 Precipitation method and catalytic explorations
3 Conclusion and outlook

中图分类号: 

()

[1] Eddaoudi M, Moler D B, Li H L, Chen B L,Reineke T M, O'Keeffe M, Yaghi O M. Acc. Chem. Res., 2001, 34(4): 319—330
[2] Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O'Keeffe M, Yaghi O M. Science, 2002, 295(5554): 469—472
[3] Gándara F, Gomez-Lor B, Gutiérrez-Puebla E, Iglesias M, Monge M A, Proserpio D M, Snejko N. Chem. Mater., 2008, 20(1): 72—76
[4] Chen B, Ockwig N W, Millward A R, Contreras D S, Yaghi O M. Angew. Chem. Int. Ed., 2005, 44(30): 4745—4749
[5] Sonnauer A S, Hoffmann F, Froba M, Kienle L, Duppel V, Thommes M, Serre C, Ferey G, Stock N. Angew. Chem. Int. Ed., 2009, 48(21): 3791—3794
[6] Kubota Y, Takata M, Matsuda R, Kitaura R, Kitagawa S, Kobayashi T C. Angew. Chem. Int. Ed., 2006, 45(30): 4932—4936
[7] Dybtsev D N, Chun H, Kim K. Angew. Chem. Int. Ed., 2004, 43(38): 5033—5036
[8] 张杰鹏(Zheng J P), 韩正波(Han Z B), 陈小明(Chen X M). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2004, 20(10): 1213—1216
[9] 程采(Cheng C), 高洪芩(Gao H L), 程鹏(Cheng P). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2004, 20(10): 1237—1240
[10] 方千荣 (Fang Q R). 吉林大学博士论文 (Doctoral Dissertation of Jilin University), 2007
[11] Sun J Y, Weng L H, Zhou Y M, Chen J X, Chen Z X, Liu Z C, Zhao D Y. Angew. Chem. Int. Ed., 2002, 41(23): 4471—4473
[12] Chae H K, Siberio-Perez D Y, Kim J, Go Y, Eddaoudi M, Matzger A J, O'Keeffe M, Yaghi O M. Nature, 2004, 427(6974): 523—527
[13] Xiao B, Yuan Q C. Particuology, 2009, 7(2): 129—140
[14] Férey G, Mellot-Draznieks C, Serre C, Millange F,Dutour J, Surble S, Margiolaki I. Science, 2005, 309(5743): 2040—2042
[15] Zou R Q, Sakurai H, Han S, Zhong R Q, Xu Q. J. Am. Chem. Soc., 2007, 129(27): 8402—8403
[16] Kaye S S, Dailly A, Yaghi O M, Long J R. J. Am. Chem. Soc., 2007, 129(46): 14176—14177
[17] Park K S, Ni Z, Cté A P, Choi J Y, Huang R, Uribe-Romo F J, Chae H K, O'keeffe M, Yaghi O M. Proc. Natl. Acad. Sci. USA, 2006, 103(27): 10186 — 10191
[18] Huang X C, Lin Y Y, Zhang J P, Chen X M. Angew. Chem. Int. Ed., 2006, 45(10): 1557—1559
[19] Gomez-Lor B, Gutiérrez-puebla E, Iglesias M, Monge M A, Ruiz-Valero C S. Inorganic Chemistry, 2002, 41(9): 2429—2432
[20] Yaghi O M, Li H, Davis C, Richardson D, Groy T. Acc. Chem. Res., 1998, 31(8): 474—484
[21] 魏文英 (Wei W Y), 方键 (Fang J), 孔海宁 (Kong H N), 韩金玉(Han J Y), 常贺英 (Chang H Y). 化学进展 (Progress in Chemistry), 2005, 17(6):1110—1115
[22] Wang Z Q,Cohen S M. Chem. Soc. Rev., 2009, 38(5): 1315—1329
[23] 贾超 (Jia C), 原鲜霞 (Yuan X X), 马紫峰 (Ma Z F). 化学进展 (Progress in Chemistry), 2009, 21(9):1954—1962
[24] 穆翠枝 (Mu C Z), 徐峰 (Xu F), 雷威 (Lei W). 化学进展 (Progress in Chemistry), 2007, 19(9):1345—1356
[25] Wang Z, Chen G, Ding K L. Chem. Rev., 2009, 109(2): 322—359
[26] Ma L Q, Abney C, Lin W B. Chem. Soc. Rev., 2009, 38(5): 1248—1256
[27] Lee J Y, Farha O K, Roberts J, Scheidt K A, Nguyen S B T, Hupp J T. Chem. Soc. Rev., 2009, 38(5): 1450—1459
[28] Qiu L G, Gu L N, Hu G, Zhang L D. Journal of Solid State Chemistry, 2009, 182(3): 502—508
[29] Fujita M, Kwon Y J, Washizu S, Ogura K. J. Am. Chem. Soc., 1994, 116(3): 1151—1152
[30] Chui S S Y, Lo S M F, Charmant J P H, Orpen A G, Williams L D. Science, 1999, 283(5405): 1148—1150
[31] Schlichte K, Kratzke T, Kaskel S. Microporous Mesoporous Mater., 2004, 73(1/2): 81—88
[32] Dinc M, Dailly A, Liu Y, Brown C M, Neumann D A, Long J R. J. Am. Chem. Soc., 2006, 128(51): 16876—16883
[33] Horike S, Dincǎ M, Tamaki K, Long G R. J. Am. Chem. Soc., 2008, 130(18): 5854—5855
[34] Evans O R, Ngo H L, Lin W B. J. Am. Chem. Soc., 2001, 123(42): 10395—10396
[35] Hwang Y K, Hong D Y, Chang J S, Seo H, Yoon M, Kim J, Jhung S H, Serre C, Férey G. Applied Catalysis A: General, 2009, 358(2): 249—253
[36] Henschel A, Gedrich K, Kraehnert R, Kaskel S. Chem. Commun., 2008, 40(4): 4192—4194
[37] Zhou Y X, Song J L, Liang S G, Hu S Q, Liu H Z, Jiang T, Han B X. Journal of Molecular Catalysis A: Chemical, 2009, 308(1/2): 68—72
[38] Zou R Q, Sakurai H, Xu Q. Angew. Chem. Int. Ed., 2006, 45(16): 2542—2546
[39] Zou R Q, Sakurai H, Han S, Zhong R Q, Xu Q. J. Am. Chem. Soc., 2007, 129(27): 8402—8403
[40] Lu Y, Tonigold M, Bredenktter B, Volkmer D, Hitzbleck J, Langstein G. Z. Anorg. Allg. Chem., 2008, 634: 2411—2417
[41] Navarro J A R, Barea E, Salas J M, Masciocchi N, Galli S, Sironi A, Ania C O, Parra J B. Inorganic Chemistry, 2006, 45(6): 2397—2399
[42] Xamena F X L I, Abad A, Corma A, Garcia H. Journal of Catalysis, 2007, 250(2): 294—298
[43] Bellussi G, Rigutto M S. Stud. Surf. Sci. Catal., 1994, 85: 177—213
[44] Seelan S, Sinha A K. Appl. Catal. A: General, 2003, 238(2): 201—209
[45] Gascon J, Aktay U, Hernandez-Alonso M D, van Klink G P M, Kapteijn F. Journal of Catalysis, 2009, 261(1): 75—87
[46] Sun C Y, Liu S X, Liang D D, Shao K Z, Ren Y H, Su Z M. J. Am. Chem. Soc., 2009, 131(5): 1883—1888
[47] Suslick K S, Bhyrappa P, Chou J H, Kosal M E, Nakagaki S, Smithenry D W, Wilson S R. Acc. Chem. Res., 2005, 38(4): 283—291
[48] Shultz A M, Farha O K, Hupp J T, Nguyen S T. J. Am. Chem. Soc., 2009, 131(12): 4204—4205
[49] Zhang X, Xamena F X L I, Corma A. Journal of Catalysis, 2009, 265(2): 155—160
[50] Hwang Y K, Hong D Y, Chang J S, Jhung S H, Seo Y K, Kim J, Vimont A, Daturi M, Serre C, Férey G. Angew. Chem. Int. Ed., 2008, 47(22): 4144—4184
[51] Sabo M, Henschel A, Frde H, Klemm E, Kaskel S. J. Mater. Chem., 2007, 17(36): 3827—3832
[52] Maksimchuk N V, Timofeeva M N, Melgunov M S, Shmakov A N, Chesalov Y A, Dybtsev D N, Fedin V P, Kholdeeva O A. Journal of Catalysis, 2008, 257(2): 315—323
[53] Opelt S, Türk S, Dietzsch E, Henschel A, Kaskel S, Klemm E. Catalysis Communications, 2008, 9(6): 1286—1290
[54] Jiang H L, Liu B, Akita T, Haruta M, Sakurai H, Xu Q. J. Am. Chem. Soc., 2009, 131(32): 11302—11303

[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[6] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[7] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[8] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[9] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[10] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[11] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[12] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[13] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[14] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[15] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.