English
新闻公告
More
化学进展 2010, Vol. 22 Issue (09): 1844-1851 前一篇   后一篇

• 综述与评论 •

单糖化学催化制取运输燃料

孙绍晖1*  孙培勤1  马国杰1  衡明星1  陈俊武2   

  1. (1.郑州大学化工与能源学院 郑州450002; 2.中国石化洛阳石油化工工程公司 洛阳471003)
  • 收稿日期:2009-12-28 修回日期:2010-02-03 出版日期:2010-09-24 发布日期:2010-10-20
  • 通讯作者: 孙绍晖 E-mail:shaohui99@zzu.edu.cn

Chemocatalytic Transformation of Sugars to Transportation Fuels

Sun Shaohui1*   Sun Peiqin1  Ma Guojie1  Heng Mingxing1  Chen Junwu2   

  1. (1. College of Chemical Engineering and Energy, zhengzhou University, Zhengzhou, 450002; 2. Luoyang Petrochemical Engineering Corporation Luoyang 471003)
  • Received:2009-12-28 Revised:2010-02-03 Online:2010-09-24 Published:2010-10-20
  • Contact: Sun shaohui E-mail:shaohui99@zzu.edu.cn

农作物秸秆和林业废弃物是资源量大、可再生的非粮生物质。它们由半纤维素、纤维素和木质素组成,源于这些生物质的单糖不仅可以经过生物催化过程制备纤维乙醇,还是化学催化法制备传统烃类运输燃料的重要平台。本文首先介绍了木质生物质酶法和酸催化法水解制备单糖的工艺特点,然后详细介绍了近几年来开发的从单糖出发制取烃类生物燃料的各种新型催化方法,如单糖直接HZSM-5分子筛催化重整制备液体烃类,以及单糖经乙酰丙酸和酯化加氢工艺、经多元醇和水相脱水加氢(APD/H)工艺、经糠醛类化合物和羟醛缩合加氢工艺、经单官能团化合物和催化提质工艺。对这些催化方法的工艺条件、催化剂组成和化学反应进行了总结评述。考虑到由单糖制备C6以上烃类可以直接或混配为传统的液体燃料,本文对这两条工艺路线进行了重点介绍,总结了过程所发生的反应和脱氧机理,并探讨了工业化过程中需要注意的科学难题。

Agricultural and forest residues consisting primarily hemicellulose, cellulose, and lignin are abundant, renewable non-food biomass resources. Fermentable sugars origin from this raw material can be converted into ethanol by biocatalystic process. Moreover, Sugars have the potential to serve as precursors of conventional transportation fuels. In this review, the process of hydrolytic conversion of woody biomass into simple sugars with the use of an acidic or enzymatic catalyst is introduced. Then, several novel chemocatalytic methods converting sugars to hydrocarbons are described, such as sugar feed directly reformed over HZSM-5 catalyst, or via Levulinic acid and subsequent esterification/hydrogenation process, polyols and subsequent aqueous-phase dehydration/hydrogenation (APD/H) process, furan derivatives and subsequent aldol condensation/hydrogenation process, monofunctional compounds and subsequent catalytic upgrading steps. These chemical routes have been explored in recent years, in the presence of solid-phase catalysts(including metal and/or acid/base active sites) under carefully controlled conditions that avoid unwanted by-products. The corresponding catalysts, process conditions, chemistries for the selective conversion are summarized in this review. More attention is paid on the current developing of two catalytic approaches for the conversion of sugars to C6+ alkanes due to targeted high-energy hydrocarbons mixtures can be used directly or blended seamlessly to make conventional liquid fuels. The reactions involved in the catalytic processes, deoxygenation mechanism, as well as the chemical and engineering barriers of industry are discussed.

Contents
1 Introduction
2 Sugar production
3 Sugars conversion into fuels
3.1 Sugars route
3.2 Levulinic route
3.3 Polyols route
3.4 Furfural route
3.5 Monofunctional compounds route
4 Current advances and discussion

中图分类号: 

()

[1 ] 陈俊武( Chen J W) ,李春年( Li C N) ,陈香生( Chen X S) .
石油替代综论( Review of Developing Petroleum Substitutes) .
北京: 中国石化出版社( Beijing:Sinopec Press) ,2009. 274—
280
[2 ] Ragauskas A J,Williams C K,Davison B H,Britovsek G,
Cairney J,Eckert C A,Frederick W J,Hallett J P,Leak D J,
Liotta C L,Mielenz J R,Murphy R,Templer R,Tschaplinski
T. Science,2006,311 (5760) :484—489
[3 ] Breaking the chemical and engineering barriers to lignocellulosic
biofuels:Next generation Hydrocarbon biorefineries. ( Ed. Huber
G W) [2009-12-1 ] http: / /www. ecs. umass. edu / biofuels /
roadmap2-08. pdf
[4 ] Hamelinck C N,Faaij A P C,Uil H,Boerrigter H. Energy,
2004,29:1743—1771
[5 ] Aden A,Ruth M,Lbsen K,Jechura J,Neeves K,Sheehan J,
Wallace B,Montague L,Slayton A,Lukas J. Technical Report,
2002,NREL /TP-510—32438
[6 ] 王泽(Wang Z) ,林伟刚( Lin W G) ,宋立文( Song L W) ,姚
建中(Yao J Z) ,鲁长波( Lu C B) ,都林( Du L) . 化学进展
( Progress in Chemistry) ,2007,19(7 /8) : 1190—1197
[7 ] Centi G,Santen R A. Catalysis for Renewables:From Feedstock
to Energy Production. Weinheim: Wiley-VCH Verlag GmbH &
Co. KGaA,2007,387—405
[8 ] Regalbuto J R. Science,2009,325(5942) :822—824
[9 ] 沈宜泓( Shen Y H) ,王帅(Wang S) ,罗琛( Luo C) ,刘海超
( Liu H C) . 化学进展( Progress in Chemistry) ,2007,19 ( 2 /
3) :431—436
[10] 张名佳( Zhang M J) ,苏荣欣( Su R X) ,齐崴( Qi W) ,何志
敏(He Z M) . 化学进展( Progress in Chemistry ) ,2009,21
(5) : 1070—1074
[11] 张素平( Zhang S P) ,颜涌捷(Yan Y J) ,任铮伟(Ren Z W) ,
李庭琛( Li T C) . 化学进展( Progress in Chemistry) ,2007,
19: 1129—1133
[12] 王树荣(Wang S R) ,庄新姝( Zhuang X S) ,骆仲泱( Luo Z
Y) ,岑可法( Cen K F ) . 工程热物理学报( Journal of
Engineering Thermophysics) ,2006,27(5) : 741—744
[13] Srokol Z,Bouche A G,Estrik A,Strik R C J,Maschmeyer T,
Peters J A. Carbohydrate Research,2004,339:1717—1726
[14] Chen N Y,Degnan J T F,Koenig L R. Chemtech,1986,16
(8) :506—511
[15] Hayes D J,Ross J,Hayes M H B,Fitzpatrick S. The Biofine
Process Production of Levulinic Acid,Furfural and Formic Acid
from Lignocellulosic Feedstocks. Biorefinery (8b) [2009-12-1 ]
http: / / www. carbolea. ul. ie / files /HFHR _ Chapter% 204 _
FINAL. pdf
[16] Elliott D C,Frye J G. US 5883266,1999
[17] Federal Register. 1999. 5,64(94) :26822—26826
[18] Huber G W,Iborra S,Corma A. Chem. Rev. ,2006,106 (9) :
4044—4098
[19] Perrard A,Gallezot P,Joly J P,Durand R,Baljou C,Coq B,
Trens P. Applied Catalysis A: General,2007,331:100—104
[20] Gallezot P, Nicolaus N, Flèche G, Fuertes P, Perrard A.
Journal of Catalysis,1998,180(1) :51—55
[21] Huber G W,Shabaker J W,Dumesic J A. Science,2003,300
(5628) :2075—2077
[22] Huber G W,Cortright R D,Dumesic J A. Angew. Chem. Int.
Ed. ,2004,43(12) :1549 —1551
[23] Davda R R, Shabaker J W, Huber G W, Cortright R D,
Dumesic J A. Applied Catalysis B: Environmental,2005,56
(1 /2) :171—186
[24] Huber G W,Chheda J N,Christopher J B,Dumesic J A.
Science,2005,308(5727) :1446—1450
[25] Huber G W,Dumesic J A. Catalysis Today,2006,111 (1 /2 ) :
119—132
[26] Chheda J N,Dumesic J A. Catalysis Today,2007,123 (1 /4 ) :
59—70
[27] Carlini C,Giuttari M,Galletti A M R,Sbrana G,Armaroli T,
Busca G. Applied Catalysis A: General,1999,183 (2 ) :295—
302
[28] Román-Leshkov Y,Dumesic J A. Topics in Catalysis,2009,52
(3) :297—303
[29] Lv H S,Li X K,Zhang M H. Transactions of Tianjin University,
2008,14(3) :198—201
[30] Huber G W. Doctoral Dissertation of University of Wisconsin-
Madison,2005
[31] 陈俊武( Chen J W) ,陈香生( Chen X S) . 中外能源( Sino-
Global Energy) ,2009,14(5) : 30—40
[32] Kunkes E L,Simonetti D A,West R M,Serrano-Ruiz J C,
Grtner C A,Dumesic J A. Science,2008,322 (5900) :417—
421
[33] West R M,Liu Z Y,Peter M,Grter C A,Dumesic J A.
Journal of Molecular Catalysis A: Chemical,2008,296 ( 1 /2 ) :
18—27
[34] Barrett C J,Chheda J N,Huber G W,Dumesic J A. Applied
Catalysis B: Environmental,2006,66(1 /2) :111—118
[35] Kunkes E L,Gürbüz E I,Dumesic J A. Journal of Catalysis,
2009,266(2) :236—249
[36] West R M,Braden D J,Dumesic J A. Journal of Catalysis,
2009,262(1) :134—143
[37] Gertner C A,Serrano-Ruiz J C,Braden D J,Dumesic J A.
Journal of Catalysis,2009,266(1) :71—78
[38] Serrano-Ruiz J C,Dumesic J A. Green Chemistry,2009,11:
1101—1104
[39] Carlson T R,Jae J,Huber G W. ChemCatChem,2009,1(1) :
107—110
[40] Blommel P G,Cortright R D. Virent Energy Systems White
Paper,“Production of Conventional Liquid Fuels from Sugars”
2008,[2009 - 12 - 01 ]http: / /www. virent. com /BioForming /
Virent_Technology_Whitepaper. pdf

[1] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.
[2] 刘毅强, 裘依梅, 唐兴, 孙勇, 曾宪海, 林鹿. 化学催化葡萄糖异构化果糖[J]. 化学进展, 2021, 33(11): 2128-2137.
[3] 张瑞, 吴云, 王鲁天, 吴强, 张宏伟. 微生物燃料电池阴极脱氮[J]. 化学进展, 2020, 32(12): 2013-2021.
[4] 乔颖, 腾娜, 翟承凯, 那海宁, 朱锦. 化学法催化纤维素高效水解成糖[J]. 化学进展, 2018, 30(9): 1415-1423.
[5] 谢嘉维, 张香文, 谢君健, 聂根阔, 潘伦, 邹吉军*. 由生物质合成高密度喷气燃料[J]. 化学进展, 2018, 30(9): 1424-1433.
[6] 朱脉勇*, 陈齐, 童文杰, 阚加瑞, 盛维琛. 四氧化三铁纳米材料的制备与应用[J]. 化学进展, 2017, 29(11): 1366-1394.
[7] 袁正求, 龙金星, 张兴华, 夏莹, 王铁军, 马隆龙. 木质纤维素催化转化制备能源平台化合物[J]. 化学进展, 2016, 28(1): 103-110.
[8] 常定明, 张海芹, 卢智昊, 黄光团, 蔡兰坤, 张乐华. 金属离子在微生物燃料电池中的行为[J]. 化学进展, 2014, 26(07): 1244-1254.
[9] 肖勇, 吴松, 杨朝晖, 郑越, 赵峰. 电化学活性微生物的分离与鉴定[J]. 化学进展, 2013, 25(10): 1771-1780.
[10] 张家仁, 邓甜音, 刘海超*. 油脂和木质纤维素催化转化制备生物液体燃料[J]. 化学进展, 2013, 25(0203): 192-208.
[11] 陈立香, 肖勇, 赵峰. 微生物燃料电池生物阴极[J]. 化学进展, 2012, 24(01): 157-162.
[12] 万鹏博, Hill Eric H., 张希. 界面超分子化学与响应性功能表面[J]. 化学进展, 2012, 24(01): 1-7.
[13] 刘湘, 潘争光, 许建和. 手性芳基邻二醇的不对称合成[J]. 化学进展, 2011, 23(5): 903-913.
[14] 郭坤 张京京 李浩然 杜竹玮. 微生物电解电池制氢*[J]. 化学进展, 2010, 22(04): 748-753.
[15] 刘宏芳,郑碧娟. 微生物燃料电池[J]. 化学进展, 2009, 21(6): 1349-1355.
阅读次数
全文


摘要

单糖化学催化制取运输燃料