English
新闻公告
More
化学进展 2010, Vol. 22 Issue (09): 1836-1843 前一篇   后一篇

• 综述与评论 •

烟气中二噁英的催化降解*

田波  黄俊  邓述波  杨淑伟  余刚**   

  1. (清华大学环境科学与工程系    持久性有机污染物研究中心 北京 100084)
  • 收稿日期:2009-12-28 修回日期:2010-01-28 出版日期:2010-09-24 发布日期:2010-10-20
  • 通讯作者: 余刚 E-mail:yg-den@tsinghua.edu.cn
  • 基金资助:

    国家自然科学基金项目;国家科技支撑计划课题

Catalytic Decomposition of PCDD/Fs from Flue Gas

Tian Bo   Huang Jun   Deng Shubo   Yang Shuwei   Yu Gang**   

  1. (POPs Research Centre, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084, China)
  • Received:2009-12-28 Revised:2010-01-28 Online:2010-09-24 Published:2010-10-20
  • Contact: Yu Gang E-mail:yg-den@tsinghua.edu.cn

催化降解是一种工业烟气的末端处理技术,该技术基于催化氧化还原反应能够实现烟气中二噁英(PCDD/Fs)在温和条件下的有效去除。目前研究较多的催化剂主要有两类:一类是Pt、Pd、Lr等贵金属型催化剂,另一类是V、Cr、W等过渡金属氧化物型催化剂。在实际应用方面,选择性催化还原(SCR)是目前最具有代表性的技术,采用V2O5/W(Mo)O3-TiO2催化剂能够同时脱除烟气中的PCDD/Fs和NOx。本文阐述了贵金属和金属氧化物两种催化剂在温和条件下降解烟气中PCDD/Fs的反应机理和研究进展,并着重介绍了负载型V基催化剂降解PCDD/Fs的配方优化研究和影响因素,最后评述了SCR的应用情况和应用条件,以及在应用过程中催化剂的失活和中毒情况,并对该技术发展方向加以展望。

The catalytic decomposition is one of the effective end-pipe technologies for PCDD/Fs removal from flue gas under mild conditions, which is on the basis of catalytic reduction and oxidation process. So far, the catalysts researched in lab-scale are mainly two categories: noble metal (Pt, Pb, Lr, etc.) and transition metal (V, Cr, W, etc.) oxides. In the field application, the selective catalytic reduction (SCR) with V2O5/W(Mo)O3-TiO2 as the catalyst is the most popular techniques, which can remove PCDD/Fs and NOx simultaneously. This paper reviews the wide scale of the catalytic decomposition of PCDD/Fs by noble metals and transition metal oxides. The destruction principles of PCDD/Fs by these two series of catalysts are introduced. The effects of the reaction conditions on the destruction efficiency are discussed such as catalysts and supports, temperature, H2O vapor, space velocity (SV) and the co-pollutants in the flue gas. Furthermore, the advantages and limitations of the destruction for PCDD/Fs by SCR are evaluated as well as the deactivation and poisoning of catalysts in situ applications. Based on the requirements of industrial application for PCDD/Fs and NOx removal, the research trends of SCR for the future are proposed in order to further improve the destruction efficiency and cost conservation.

Contents
1 Introduction
2 Decomposition of PCDD/Fs by Noble metals
2.1 Reaction Mechanism
2.2 Research progress
3 Decomposition of PCDD/Fs by Metal oxides
3.1 Reaction Mechanism
3.2 Research progress
4 Decomposition of PCDD/Fs by Selective catalytic reduction (SCR)
4.1 Application progress
4.2 Application conditions
4.3 Deactivation and regeneration of SCR catalysts
5 Conclusions and prospects

中图分类号: 

()

[1 ] Kogevinas M. Human Reprodu. Update. ,2001,7: 331—339
[2 ] Olie K,Vermuelen P,Hutzinger O. Chemosphere,1977,6:
455—459
[3 ] 夏传海(Xia C H) ,徐杰( Xu J) ,吴文忠(Wu W Z) ,梁鑫淼
( Liang X M) . 化学进展( Prog. Chem. ) ,2004,16: 123—130
[4 ] Kinzel J,Gebert W,Gara S. Organohalogen Compd. ,1994,
19: 311—316
[5 ] Everaert K,Baeyens J. Chemosphere,2002,46: 439—448
[6 ] Riggs K,Brown T,Schrock M. Organohalogen Compd. ,1995,
24: 51—54
[7 ] Cleverly D H,Winters D,Ferrario J,Schaum J,Riggs K,Hartford
P,Joseph D. Organohalogen Compd. ,1999,41: 467—470
[8 ] Quass U, Fermann M, Broker G. Directorate General for
Environment (DGENV) ,Essen,2001,ISSN0947—5206
[9 ] 中科院生态环境研究中心( RCEES of CAS) . 中国副产品类
POPs 清单报告(Report of UP POPs Inventory in China) ,2006
[10] Long R Q,Yang R T,Padin J,Takahashi A,Takahashi T. Ind.
Eng. Chem. Res. ,1999,38: 2726—2732
[11] Choi K I,Lee D H. Chemosphere,2007,66 (2) : 370—376
[12] Buckens A,Huang H. J. Hazard. Mater. ,1998,62: 1—33
[13] Takasuga T, Inoue T,Ohi E. Archi. Environ. Contami. &
Toxic. ,2004,46: 419—431
[14] UNEP. Guidelines on Best Available Techniques and Guidance
on Best Environmental Practices Relevant to Article 5 and Annex
C of the Stockholm Convention on Persistent Organic Pollutants.
2006,38—46
[15] Everaet K,Baeyens J. J. Hazard. Mater. ,2004,109: 113—
119
[16] Kim S C,Jeon S H,Jung I R,Kim K H,Kwon M H,Kim J H.
Chemosphere,2001,43: 773—776
[17] Pirkanniemi K,Sillanpaa M. Chemosphere,2002,48: 1047—
1060
[18] Conner W C,Falconer J L. Chem. Rev. ,1995,95: 759—788
[19] Urbano F J,Marinas J M. J. Mol. Catal. A-Chem. ,2001,
173: 329—345
[20] Fueno H, Tanaka K, Sugawa S. Chemosphere, 2002, 48:
771—778
[21] Ukisu Y,Miyadera T. Appl. Catal. B-Environ. ,2003,40:
141—149
[22] Van den Brink R W,Krzan M,Feijen-Jeurissen M M R,Louw
R,Mulder P. Appl. Catal. B: Environ. ,2000,24: 255—264
[23] Ukisu Y,Miyadera T. Chemosphere,2002,46: 507—510
[24] Gardner S D,Hoflund G B,Davidson M R,Schryer D R. J.
Catal. ,1989,115: 132—137
[25] Taylor K,Schlatter J. J. Catal. ,1980,63: 53—71
[26] Okumura M,Akita T,Haruta M,Wang X,Kajikawa O,Okada
O. Appl. Catal. B-General,2003,41: 43—52
[27] De Jong V,Cieplik M K,Reints W A,Fernandez-Reino F,
Louw R. J. Catal. ,2002,211: 355—365
[28] Weber R,Sakurai T,Hanspaul H. Appl. Catal. B-Environ. ,
1999,20: 249—256
[29] Ozkan S,Cai Y P,Kumthekar W. J. Catal. ,1994,149:
375—389
[30] Oyama T. J. Catal. ,1991,128: 210—217
[31] Gilardoni F,Bell A T,Chakraborty A,Boulet P. J. Phys.
Chem. ,2000,104: 12250—12255
[32] Finocchio E,Busca G,Notaro M. Chemosphere,2006,62:
12—20
[33] Poplawske K,Lichtenberger J,Keil F J,Schnitzlein K,Amiridis
M D. Catal. Today,2000,62: 329—336
[34] Lichtenberger J,Amiridis M. J. Catal. ,2004,223: 296—308
[35] Corella J,Toledo J M,Gutierrez M. Progress in Thermochemical
Biomass Conversion,2001,I: 887—895
[36] Hagenmaier H. Katalytische Oxidation Halogenierter
Kohlenwasser-Stoffe unter Besonderer Berucksichtigung des
Dioxinproblems,VDI Berichte 730,1989,239—254
[37] Hagenmaier H, Horch K, Fahlenkamp H, Schetter G.
Chemosphere,1991,23: 1429—1437
[38] Weber R,Sakurai T,Hagenmaier H. Chemosphere,1999,38:
2633—2642
[39] Lomicki S, Lichtenberger J, Xu Z,Waters M, Kosman J,
Amiridis M D. Appl. Catal. B-Environ. ,2003,46: 105—119
[40] Goemans M,Clarysse P,Joannes J,de Clercq D,Lenaerts S,
Matthys K,Boels K. Chemosphere,2004,54: 1357—1365
[41] Bertinchamps F,Gregoire C,Gaigneaux M. Appl. Catal. BEnviron.
,2006,66: 10—22[42] Andreeva D,Ilieva L,Idakiev V,Blin J L,Gigot L,Su B L.
Appl. Catal. A-Gene. ,2003,243: 25—39
[43] Debecker D,Faure C,Meyre M. Small,2008,4: 1806—1812
[44] Ehrich H,Berndt H,Martina M. Appl. Catal. A-Gene. ,2002,
230: 271—280
[45] Jin L,Abraham M. Ind. Eng. Chem. Res. ,1991,30: 89—95
[46] Boos R,Budin R,Hartl H,Stock M,Wurst F. Chemosphere,
1992,25: 375—382
[47] Frings B, Marl K. Katalytische Dioxin-Minderung, Umwelt-
Special,1994,K22—K26
[48] Ide Y, Kashiwabara K, Okada K, Mori S, Hara M.
Chemosphere,1996,32: 189—198
[49] Jones J,Ross J. Catal. Today,1997,35: 97—105
[50] Krishnamoorthy S,Baker J,Amiridis M. Catal. Today,1998,
40: 39—46
[51] Tartler M,Vermeulen M,Winden T. Organohalogen Compd. ,
1996,27: 68—71
[52] Ishida M, Shiji R, Nie P, Nakamura N. Organohalogen
Compd. ,1996,27: 147—152
[53] Busca G,Baldi M,Pistarino C,Gallardo J M,Sanchez E V.
Catalysis Today,1999,53: 525—533
[54] Shin D H, Choi S, Oh J E, Chang Y S. Environ. Sci.
Technol. ,1999,33: 2657—2666
[55] Krishnamoorthy S,Rivas J,Amiridis M. J. Catal. ,2000,193:
264—272
[56] Xu Z T, Fritsky K,Graham J,Dellinger B. Organohalogen
Compd. ,2000,45: 419—422
[57] Liljelind P, Unsworth J, Maaskant O, Marklund S.
Chemosphere,2001,42: 615—623
[58] Cho C H,Ihm S K. Environ. Sci. Technol. ,2002,36: 1600—
1606
[59] Wielgosinski G, Grochowalski A, Machej T, Pajak T,
Cwiakalski W. Chemosphere,2007,67: S150—S154
[60] Delaigle R,Debecker D P,Bertinchamps F,Gaigneaux E M.
Top Catal. ,2009,52: 501—516
[61] Wang H C,Chang S H,Hung P C,Hwang J F,Chang M B. J.
Hazard. Mater. ,2009,164: 1452—1459
[62] Unsworth J, Maaskant O, Andersson P, Marklund S.
Organohalogen Compd. ,1999,40: 435—440
[63] 沈伯雄( Shen B X) ,施建伟( Shi J W) ,杨婷婷(Yang T T) ,史
展亮( Shi Z L) . 化工进展( Chem. Indu. & Engi. Prog. ) ,
2008,27: 64—67
[64] Goemans M,Clarysse P,Joannes J,de Clercq P,Lenaerts S,
Matthys K,Boels K. Chemosphere,2003,50: 489—497
[65] Hartenstein H U. The Handbook of Environmental Chemistry,
2003,Vol. 3,Part O: 389—423
[66] Kim S C,Jeon S H,Jung I R,Kim K H,Kwon M H,Kim J H,
Yi J H,Kim S J. Chemosphere,2001,43: 773—776
[67] Chi K H,Chang M B,Chien G P. Sci. Total Env. ,2005,347:
148—162
[68] Wang L C,Lee W J,Tsai P J,Lee W S,Chang-Chien G P.
Chemosphere,2003,50: 1123—1129
[69] Chang S H,Chi K H,Young C W. Environ. Sci. Technol. ,
2009,43: 7523—7530
[70] Chang M B,Chi K H,Chang S H,Yeh J W. Chemosphere,
2007,66: 1114—1122
[71] Zheng Y J, Jensen A D, Johnsson J E. Appl. Catal. B:
Environ. ,2005,60: 253—264
[72] 张强( Zhang Q) . 燃煤电站SCR 烟气脱硝技术及工程应用
( Coal Fired Power Plants SCR Nitrogen Oxides Control and
Removal) . 北京: 化学工业出版社( Beijing: Chemical
Engineering Press) ,2007. 102—106
[73] Xie G Y,Liu Z Y,Zhu Z P. Appl. Catal. B: Environ. ,2003,
45: 213—221
[74] Raziyeh K,Odenbrand I. Appl. Catal. B: Environ. ,2001,30:
87—99
[75] Raziyeh K,Odenbrand I. Appl. Catal. B: Environ. ,2001,33:
277—291

[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[3] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[4] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[5] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[6] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[7] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[8] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[9] 苏原, 吉可明, 荀家瑶, 赵亮, 张侃, 刘平. 甲醛氧化催化剂及反应机理[J]. 化学进展, 2021, 33(9): 1560-1570.
[10] 金士成, 闫爽. 金属氧化物室温气敏材料的结构调控及传感机理[J]. 化学进展, 2021, 33(12): 2348-2361.
[11] 徐梦婷, 王彦青, 毛亚, 李景娟, 江志东, 原鲜霞. 非水系锂空气电池催化剂[J]. 化学进展, 2021, 33(10): 1679-1692.
[12] 张志, 邹晨涛, 杨水金. 基于钨(钼)酸铋半导体复合材料的合成及其在光催化降解中的应用[J]. 化学进展, 2020, 32(9): 1427-1436.
[13] 陈豪登, 徐建兴, 籍少敏, 姬文晋, 崔立峰, 霍延平. MOFs衍生金属氧化物及其复合材料在锂离子电池负极材料中的应用[J]. 化学进展, 2020, 32(2/3): 298-308.
[14] 朱蕾, 王嘉楠, 刘建伟, 王玲, 延卫. 静电纺丝一维纳米材料在气敏传感器的应用[J]. 化学进展, 2020, 32(2/3): 344-360.
[15] 曹秀军, 张雷, 朱元鑫, 张鑫, 吕超南, 侯长民. 软铋矿基微纳米材料的设计合成及其在光催化中的应用[J]. 化学进展, 2020, 32(2/3): 262-273.
阅读次数
全文


摘要

烟气中二噁英的催化降解*