English
新闻公告
More
化学进展 2010, Vol. 22 Issue (09): 1826-1835 前一篇   后一篇

• 综述与评论 •

用于肝细胞球形聚集体培养的生物材料*

邱媛1,2   章继川2   高长有2,3**   

  1. (1. 浙江加州国际纳米技术研究院 杭州 310012; 2. 教育部高分子合成与功能构造重点实验室  浙江大学高分子科学与工程学系 杭州310027 ;3. 浙江大学传染病诊治国家重点实验室 杭州 310003)
  • 收稿日期:2009-12-18 修回日期:2010-02-04 出版日期:2010-09-24 发布日期:2010-10-20
  • 通讯作者: 高长有 E-mail:cygao@zju.edu.cn;cygao@mail.hz.zj.cn
  • 基金资助:

    国家高技术发展计划(836);国家自然科学基金;国家重点基础研究发展计划(973)

Biomaterials for Spheroidal Aggregate Culture of Hepatocytes

Qiu Yuan1,2  Zhang Jichuan2   Gao Changyou2,3**   

  1. (1.Zhejiang-California International NanoSystems Institute, Hangzhou 310012, China;2. Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China ;3.State Key Laboratory for Diagnosis and Treatment of Infectious Disease,Zhejiang University, Hangzhou 310003, China )
  • Received:2009-12-18 Revised:2010-02-04 Online:2010-09-24 Published:2010-10-20
  • Contact: Gao Changyou E-mail:cygao@zju.edu.cn;cygao@mail.hz.zj.cn

在进行与肝脏疾病治疗的相关研究中,肝细胞的体外培养是一个关键的问题。由于微环境的变化,肝细胞容易在体外培养中逐渐丧失正常表型和肝特异性功能。研究发现,在适当条件下,肝细胞可以形成多细胞球形聚集体,肝细胞在球形聚集体中呈现出与体内形态相仿的立体结构,细胞的表型和功能都得到了较好的维持。因此,如何调控肝细胞球形聚集体的形成以及尺寸形貌,得到具有高细胞密度、能在体外长时间保持高水平肝特异性功能的肝细胞球形聚集体是这方面研究的热点。本文对近年来肝细胞球形聚集体培养的研究成果进行了综述。首先介绍了肝细胞在体内的生长环境和肝脏的细胞结构,然后对培养肝细胞的生物材料各方面的性质,如材料的化学组成、表面电荷、亲疏水性质、表面形貌以及立体结构对肝细胞球形聚集体的影响进行了阐述。同时也简要介绍了其他一些因素对肝细胞球形聚集体培养的影响。最后,对肝细胞球形聚集体培养的研究进展进行了总结和展望。

In the study of therapies for liver diseases, the in vitro culture of hepatocytes is one of the key issues since these cells are apt to lose their normal phenotype and liver-specific functions as a result of the change of culture microenvironment in vitro. It has been shown that the hepatocyte spheroidal aggregates can better maintain the normal structures and functions of hepatocytes, and thereby are more attractive for therapeutic applications. In this article, the recent progress on hepatocyte spheroidal aggregates is reviewed. It starts with the introduction of the status of hepatocytes in sinusoids and cellular architecture of the liver , following with detail discussion on influences of biomaterials on the hepatocyte spheroidal aggregates in terms of morphology and functions. These factors include chemical composition like galactose and RGD, charging property, hydrophilicity/hydrophobicity, surface topology, and three-dimensional scaffolds. Other factors such as culture environment, addition of bioactive factors, and co-culture with other types of cells are also introduced briefly. Finally, perspectives of study on the spheroidal aggregates are suggested.

Contents 
1 Introduction
2 Influences of biomaterials on hepatocyte spheroidal aggregates
2.1 Culture substrates modified with galactose
2.2 Multifunctional substrates modified with galactose
2.3 charged substrates
2.4 Hydrophilicity/hydrophobicity of the substrates
2.5 Topographical substrates
2.5 Three-dimensional scaffolds
3 Other factors beyond the biomaterials
4 Conclusions and Perspectives

中图分类号: 

()

[1 ] Strain A J,Neuberger J M. Science,2002,295: 1005—1009
[2 ] Lee W M N. Engl. J. Med. ,1993,329: 1862—1872
[3 ] Allen J W,Hassanein T,Bhatia S N. Hepatology,2001,34:
447—455
[4 ] Patzer J F,Ann N Y. Acad. Sci. ,2001,944: 320—333
[5 ] Carpentier B,Gautier A,Legallais C. Gut,2009,58: 1690—
1702
[6 ] Berthiaume F,Moghe P V,Toner M,et al. Faseb. J. ,1996,
10: 1471—1484
[7 ] Landry J,Bernier D,Ouellet C,et al. J. Cell. Biol. ,1985,
101: 914—923
[8 ] Brophy C M, Luebke-Wheeler J L, Amiot B P, et al.
Hepatology,2009,49: 578—586[9 ] Hansen L K,Hsiao C C,Friend J R,et al. Tissue Eng. ,1998,
4: 65—74
[10] Hodgkinson C P,Wright M C,Paine A J. Mol. Pharmacol. ,
2000,58: 976—981
[11] Kim S H,Kim J H,Akaike T. Febs Lett. ,2003,553: 433—
439
[12] Chung T W,Yang J,Akaike T,et al. Biomaterials,2002,23:
2827—2834
[13] Park I K,Yang J,Jeong H J,et al. Biomaterials,2003,24:
2331—2337
[14] Yang J,Goto M,Ise H,et al. Biomaterials,2002,23: 471—
479
[15] Gotoh Y,Niimi S,Hayakawa T,et al. Biomaterials,2004,25:
1131—1140
[16] Tobe S,Takei Y,Kobayashi K,et al. Biochem. Biophys. Res.
Commun. ,1992,184: 225—230
[17] Yoon J J,Nam Y S,Kim J H,et al. Biotechnol. Bioeng. ,
2002,78: 1—10
[18] Tan H P,Lao L H,Wu J D,et al. Polym. Adv. Technol. ,
2008,19: 15—23
[19] Ying L,Yin C,Zhuo R X,et al. Biomacromolecules,2003,4:
157—165
[20] Seo S J,Akaike T,Choi Y J,et al. Biomaterials,2005,26:
3607—3615
[21] Seo S J,Park I K,Yoo M K,et al. J. Biomat. Sci-Polym. E,
2004,15: 1375—1387
[22] Kim S H,Hoshiba T, Akaike T. Biomaterials,2004,25:
1813—1823
[23] Kim S H,Hoshiba T,Akaike T. J. Biomed. Mater. Res. Part
A,2003,67A: 1351—1359
[24] Glicklis R,Merchuk J C,Cohen S. Biotechnol. Bioeng. ,2004,
86: 672—680
[25] Harris A L. Nat. Rev. ,Cancer,2002,2: 38—47
[26] Du Y N,Chia S M,Han R B,et al. Biomaterials,2006,27:
5669—5680
[27] Du Y,Han R B,Wen F,et al. Biomaterials,2008,29: 290—301
[28] Chew S Y,Mi R F,Hoke A,et al. Adv. Funct. Mater. ,2007,
17: 1288—1296
[29] Yim E K F,Wen J,Leong K W. Acta Biomater. ,2006,2:
365—376
[30] Chew S Y,Wen J,Yim E K F,et al. Biomacromolecules,
2005,6: 2017—2024
[31] Chew S Y,Hufnagel T C,Lim C T,et al. Nanotechnology,
2006,17: 3880—3891
[32] Chua K N,Lim W S,Zhang P C,et al. Biomaterials,2005,
26: 2537—2547
[33] Feng Z Q,Chu X H,Huang N P,et al. Biomaterials,2009,
30: 2753—2763
[34] Koide N, Sakaguchi K,Koide Y, et al. Exp. Cell. Res. ,
1990,186: 227—235
[35] Ijima H,Matsushita T,Nakazawa K,et al. Tissue Eng. ,1998,
4: 213—226
[36] Matsushita T,Nakano K,Nishikura Y,et al. Cytotechnology,
2003,42: 57—66
[37] Kidambi S,Lee I,Chan C. J. Am. Chem. Soc. ,2004,126:
16286—16287
[38] Janorkar A V, Rajagopalan P, Yarmush M L, et al.
Biomaterials,2008,29: 625—632
[39] Ma Z W,Mao Z W,Gao C Y. Colloid Surface B,2007,60:
137—157
[40] 彭承宏( Peng C H) ,韩宝三( Han B S) ,高长有( Gao C Y)
等. 中华外科杂志( Chinese Journal of Surgery ) ,2004,42
(17) : 1064—1068
[41] 彭承宏( Peng C H) ,韩宝三( Han B S) ,高长有( Gao C Y)
等. 中华医学杂志(National Medical Journal of China) ,2004,
84(17) : 1460—1464
[42] Wittmer C R,Phelps J A,Lepus C M,Saltzman W M,Harding
M J,Van Tassel P R. Biomaterials,2008,29: 4082—4090
[43] Tsai W B,Lin J H. Acta Biomater. ,2009,5: 1442—1454
[44] Flemming R G,Murphy C J,Abrams G A,et al. Biomaterials,
1999,20: 573—588
[45] Krasteva N,Seifert B,Albrecht W,et al. Biomaterials,2004,
25: 2467—2476
[46] Smith L A,Liu X H,Hu J,et al. Biomaterials,2009,30:
2516—2522
[47] Fukuda J,Nakazawa K. Tissue Eng. ,2005,11: 1254—1262
[48] Huang H,Oizumi S,Kojima N,et al. Biomaterials,2007,28:
3815—3823
[49] Lee J,Cuddihy M J,Cater G M,et al. Biomaterials,2009,30:
4687—4694
[50] Bhatia S N,Balis U J,Yarmush M L,et al. Faseb J. ,1999,
13: 1883—1900
[51] Thomas R J,Bennett A,Thomson B,et al. Eur. Cells Mater. ,
2006,11: 16—26
[52] Kidambi S, Sheng L F, Yarmush M L, et al. Macromol.
Biosci. ,2007,7: 344—353
[53] Hannachi I E, Itoga K, Kumashiro Y, et al. Biomaterials,
2009,30: 5427—5432
[54] Miyazawa M,Torii T,Toshimitsu Y,et al. J. Gastroenterol.
Hepatol. ,2007,22: 1959—1964

[1] 古孝雪, 于晶, 杨明英, 帅亚俊. 丝素蛋白3D打印在生物医学领域中的应用[J]. 化学进展, 2022, 34(6): 1359-1368.
[2] 赵睿, 杨晓, 朱向东, 张兴栋. 微量元素锶掺杂生物材料在骨修复领域的应用[J]. 化学进展, 2021, 33(4): 533-542.
[3] 左新钢, 张昊岚, 周同, 高长有. 调控细胞迁移和组织再生的生物材料研究[J]. 化学进展, 2019, 31(11): 1576-1590.
[4] 韩毅, 董海青, 李胜, 李维达, 李永勇. 胰岛封装技术及其在胰岛移植中的应用[J]. 化学进展, 2018, 30(11): 1660-1668.
[5] 蒋敏, 王敏, 魏仕勇, 陈志宝, 木士春. 基于静电纺丝技术的取向纳米纤维[J]. 化学进展, 2016, 28(5): 711-726.
[6] 刘宗光, 屈树新, 翁杰. 聚多巴胺在生物材料表面改性中的应用[J]. 化学进展, 2015, 27(2/3): 212-219.
[7] 程新峰, 金勇, 漆锐, 樊宝珠, 李汉平. 刺激响应降解型聚合物水凝胶[J]. 化学进展, 2015, 27(12): 1784-1798.
[8] 刘小波, 寇宗魁, 木士春. 多孔石墨烯材料[J]. 化学进展, 2015, 27(11): 1566-1577.
[9] 许利娜, 马培培, 陈强, 林思聪, 沈健. 甲基丙烯酰乙基磺基甜菜碱类聚合物的生物应用[J]. 化学进展, 2014, 26(0203): 366-374.
[10] 李春鸽, 赵爽, 李俊杰, 尹玉姬*. 含巯基/二硫键聚合物生物材料[J]. 化学进展, 2013, 25(01): 122-134.
[11] 马梦佳, 陈玉云, 闫志强, 丁剑, 何丹农*, 钟建*. 原子力显微镜在纳米生物材料研究中的应用[J]. 化学进展, 2013, 25(01): 135-144.
[12] 唐诗洋, 孙晓君, 林丽, 孙艳, 刘献斌. 单分散介孔氧化硅纳米颗粒的制备及其在生物材料方面的应用[J]. 化学进展, 2011, 23(9): 1973-1984.
[13] 王玮, 李博, 高长有. 生物材料表面性能调控骨髓间充质干细胞分化[J]. 化学进展, 2011, 23(10): 2160-2168.
[14] 何淑漫 周健. 抗凝血生物材料*[J]. 化学进展, 2010, 22(04): 760-772.
[15] 胡小红 朱旸 高长有. 用于软骨修复的水凝胶*[J]. 化学进展, 2009, 21(10): 2164-2175.