English
新闻公告
More
化学进展 2010, Vol. 22 Issue (09): 1784-1798 前一篇   后一篇

• 综述与评论 •

水滴模板法构筑蜂窝状有序多孔膜*

孙航  吴立新**   

  1. (吉林大学超分子结构与材料国家重点实验室 长春130012)
  • 收稿日期:2010-01-21 修回日期:2010-02-11 出版日期:2010-09-24 发布日期:2010-10-20
  • 通讯作者: 吴立新 E-mail:wulx@jlu.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973);国家自然科学基金项目

Ordered Honeycomb-Patterned Films via Breath Figures

Sun Hang   Wu Lixin**   

  1. (State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China)
  • Received:2010-01-21 Revised:2010-02-11 Online:2010-09-24 Published:2010-10-20
  • Contact: Wu Lixin E-mail:wulx@jlu.edu.cn

水滴模板法是利用凝结并自组织有序排列的水滴为模板构筑有序蜂窝状多孔薄膜的方法。这种方法具有方便、快速、廉价、作为模板的水滴可以自然蒸发而除去,且孔洞的尺寸可以通过改变相关的实验参数方便的进行调控的优点,因而近年来受到了人们的广泛关注。本文介绍了利用水滴模板法构筑有序多孔薄膜的实验方法,探讨了形成机理和相关实验条件对多孔薄膜结构的影响,并结合当前的研究热点针对多孔薄膜的进一步应用,着重综述了水滴模板法在不同性质的成膜材料体系的应用、多孔薄膜中亚有序结构的引入以及提高多孔薄膜稳定性的方法。最后,本文展望了利用水滴模板法构筑有序多孔薄膜这一研究领域的发展前景。

Ordered honeycomb-patterned films have important applications in patterned templates, photonic or optoelectronic devices, catalysis, sensors, and so on. Among those techniques for the fabrication of honeycomb structured films, the breath figure is proved to be an effective dynamic template method through providing a humid condition to the surface of polymer solution in a volatile solvent. The condensed water droplets caused by rapid cooling due to solvent evaporation self-organize into a well ordered hexagonal array that acts as the template directing the formation of ordered honeycomb-patterned structure. The breath figure technique has attracted considerable attention over recent years due to its facility, speedness, cheapness, and the automatic remove of the condensed water droplets. And the size of the pore structure can be easily adjusted by changing the correlative experimental parameters. This paper reviews the breath figure method, discusses the formation mechanism and the effects of the correlative experimental parameters on the structures of the formed honeycomb-patterned films, and summarizes the diverse functional materials applied in this breath figure method, the methods used to enhance the stability of the porous films, the introduction of substructures into the honeycomb-patterned films in view of the further applications of the honeycomb-patterned films. Finally, the development trend of this breath figure method for the preparation of ordered honeycomb-patterned films is prospected.

Contents 
1 Introduction
2 Method and mechanism
3 Influence factors
4 Applied materials
4.1 Polymers
4.2 Nanomaterials
4.3 Biomaterials and biocompatible polymers
4.4 Organometallic materials
5 Honeycomb-patterned films with substructure
5.1 Amphiphilic block copolymers
5.2 Mixtures
6 Enhancement of the stability
7 Applications
7.1 Template
7.2 Superhydrophobic surface
7.3 Cell growth substrate
8 Conclusions and outlook

中图分类号: 

()

[1 ] Campbell M,Sharp D N,Turberfield A J. Nature,2000,404:
53—56
[2 ] Davis M E. Nature,2002,417: 813—821
[3 ] Palm A,Novotny M V. Anal. Chem. ,1997,69: 4499—4507
[4 ] Schugens C,Maquet V,Grandfils C,Jerome R,Teyssie P.
Polymer,1996,37: 1027—1038
[5 ] Khang D,Yoon H,Lee H H. Adv. Mater. ,2001,13: 749—
752
[6 ] Gates B,Yin Y,Xia Y. Chem. Mater. ,1999,11: 2827—
2836
[7 ] Seshadri R,Meldrum F C. Adv. Mater. ,2000,12: 1149—
1151
[8 ] Imhof A,Pine D J. Nature,1997,389: 948—951
[9 ] Li Z,Zhao W,Liu Y,Rafailovich M H,Sokolov J,Khougaz K,
Eisenberg A,Lennox R B,Krausch G. J. Am. Chem. Soc. ,
1996,118: 10892—10893
[10] Hoa M L K,Lu M,Zhang Y. Advances in Colloid and Interface
Science,2006,121: 9—23
[11] Widawski G, Rawiso M, Francois B. Nature, 1994, 369:
387—389
[12] Bunz U H F. Adv. Mater. ,2006,18: 973—989
[13] Stenzel M H,Barner-Kowollik C,Davis T P. J. Polym. Sci.
Part A: Polym. Chem. ,2006,44: 2363—2375
[14] Stenzel M H. Aust. J. Chem. ,2002,55: 239—243
[15] 王赪胤(Wang C Y) ,冒银道(Mao Y D) ,王德艳(Wang D
Y) ,胡效亚(Hu X Y) . 化学进展( Progress in Chemistry) ,
2008,20(1) : 105—116
[16] Rayleigh L. Nature,1911,86: 416—417
[17] Rayleigh L. Nature,1912,90: 436—437
[18] Knobler C M,Beysens D. Europhys. Lett. ,1988,6: 707—712
[19] Steyer A,Guenoun P,Beysens D,Knobler C M. Phys. Rev.
B: Condens. Matter Mater. Phys. ,1990,42: 1086—1088
[20] Karthaus O,Maruyama N,Cieren X,Shimomura M,Hasegawa
H,Hashimoto T. Langmuir,2000,16: 6071—6076
[21] Barrow M S,Jones R L,Srinivasarao M. Spectroscopy,2004,
18: 577—585
[22] Srinivasarao M,Collings D,Philips A,Patel S. Science,2001,
292: 79—83
[23] Maruyama N,Koito T,Nishida J,Sawadaishi T,Cieren X,Ijiro
K,Karthaus O,Shimomura M. Thin Solid Films,1998,327:854—856
[24] Peng J,Han Y,Yang Y,Li B. Polymer,2004,45: 447—452
[25] Tian Y,Ding H,Jiao Q, Shi Y. Macromol. Chem. Phys. ,
2006,207: 545—553
[26] Wang C,Mao Y,Wang D,Qu Q,Yang G,Hu X. J. Mater.
Chem. ,2008,18: 683—690
[27] Hernandez-Guerrero M,Davis T P,Barner-Kowollik C,Stenzel
M H. Eur. Polym. J. ,2005,41: 2264—2277
[28] Li J,Cheng J,Zhang Y,Gopalakrishnakone P. Colloid Polym.
Sci. ,2009,287: 29—36
[29] Hernández-Guerrero M,Barner-Kowollik C,Davis T P,Stenzel
M H. European Polymer Journal,2005,41: 2264—2277
[30] Saunders A E,Dickson J L,Shah P S,Lee M Y,Lim K T,
Johnston K P,Korgel B A. Physical Review E,2006,73: art.
no. 031608
[31] Cheng C X,Tian Y,Shi Y Q,Tang R P, Xi F. Langmuir,
2005,21: 6576—6581
[32] Ghannam L,Manguian M,Francois J,Billon L. Soft Matter,
2007,3: 1492—1499
[33] Nishikawa T,Ookura R,Nishida J,Arai K,Hayashi J,Kurono
N,Sawadaishi T,Hara M,Shimomura M. Langmuir,2002,18:
5734—5740
[34] Connal L A,Vestberg R,Gurr P A,Hawker C J,Qiao G G.
Langmuir,2008,24: 556—562
[35] Connal L A,Qiao G G. Soft Matter,2007,3: 837—839
[36] Nishikawa T,Nonomura M,Arai K,Hayashi J,Sawadaishi T,
Nishiura Y,Hara M, Shimomura M. Langmuir,2003,19:
6193—6201
[37] Ma H,Hao J. Chem. Eur. J. ,2010,16: 655—660
[38] Bolognesi A,Mercogliano C,Yunus S,Civardi M,Comoretto
D,Turturro A. Langmuir,2005,21: 3480—3485
[39] Yu C,Zhai J,Gao X,Wan M,Jiang L,Li T,Li Z. J. Phys.
Chem. B,2004,108: 4586—4589
[40] Nurmawati M H,Renu R,Ajikumar P K,Sindhu S,Cheong F
C,Sow C H,Valiyaveettil S. Adv. Funct. Mater. ,2006,16:
2340—2345
[41] Song L,Bly R K,Wilson J N, Bakbak S, Park J O,
Srinivasarao M,Bunz U H F. Adv. Mater. ,2004,16: 115—
118
[42] Liu C,Gao C,Yan D Y. Angew. Chem. Int. Ed. ,2007,46:
4128—4131
[43] Dong W,Zhou Y,Yan D,Mai Y,He L,Jin C. Langmuir,
2009,25: 173—178
[44] Ejima H,Iwata T,Yoshie N. Macromolecules, 2008, 41:
9846—9848
[45] Kim J H,Seo M,Kim S Y. Adv. Mater. ,2009,21: 4130—
4133
[46] Yonezawa T,Onoue S Y,Kimizuka N. Adv. Mater. ,2001,
13: 140—142
[47] Shah P S,Sigman M B,Stowell C A,Lim K T,Johnston K P,
Korgel B A. Adv. Mater. ,2003,15: 971—974
[48] Saunders A E,Shah P S,Sigman M B,Hanrath T,Hwang H
S,Lim K T,Johnston K P,Korgel B A. Nano Lett. ,2004,4:
1943—1948
[49] Li J,Peng J,Huang W,Wu Y,Fu J,Cong Y,Xue L,Han Y
C. Langmuir,2005,21: 2017—2021
[50] Takamori H,Fujigaya T,Yamaguchi Y,Nakashima N. Adv.
Mater. ,2007,19: 2535—2539
[51] Wakamatsu N,Takamori H,Fujigaya T,Nakashima N. Adv.
Funct. Mater. ,2009,19: 311—316
[52] Lee S H,Park J S,Lim B K,Mo C B,Lee W J,Lee J M,
Hong S H,Kim S O. Soft Matter,2009,5: 2343—2346
[53] Francois B,Ederlé Y,Mathis C. Synth. Met. ,1999,103:
2362—2363
[54] Vohra V,Bolognesi A,Calzaferri G,Botta C. Langmuir,2009,
25: 12019—12023
[55] Bu W,Li H,Sun H,Yin S,Wu L. J. Am. Chem. Soc. ,
2005,127: 8016—8017
[56] Sun H,Li H,Bu W,Xu M,Wu L. J. Phys. Chem. B,2006,
110: 24847—24854
[57] Fan D,Jia X,Tang P,Hao J C,Liu T. Angew. Chem. Int.
Ed. ,2007,46: 3342—3345
[58] Tang P Q,Hao J C. Langmuir,2010,26: 3843—3847
[59] Tang P,Hao J C. Journal of Colloid and Interface Science,
2009,333: 1—5
[60] Sun H,Li W,Wollenberg L,Li B,Wu L,Li F,Xu L. J.
Phys. Chem. B,2009,113: 14674—14680
[61] Kadla J F,Asfour F H,Bar-Nir B. Biomacromolecules,2007,
8: 161—165
[62] Stenzel M H,Davis T P,Fane A G. J. Mater. Chem. ,2003,
13: 2090—2097
[63] Sun H,Li W,Wu L. Langmuir,2009,25: 10466—10472
[64] Zhao B,Zhang J,Wang X,Li C X. J. Mater. Chem. ,2006,
16: 509—513
[65] Karikari A S,Williams S R,Heisey C L,Rawlett A M,Long T
E. Langmuir,2006,22: 9687—9693
[66] Fukuhira Y,Kitazono E,Hayashi T,Kaneko H,Tanaka M,
Shimomura M,Sumi Y. Biomaterials,2006,27: 1797—1802
[67] Chang-Soo L,Kimizuka N. Proc. Natl. Acad. Sci. USA,2002,
99: 4922—4926
[68] Englert B C,Scholz S,Leech P J,Srinivasarao M,Bunz U H
F. Chem. Eur. J. ,2005,11: 995—1000
[69] Karthaus O,Cieren X,Maruyama N,Shimomura M. Materials
Science and Engineering C,1999,10: 103—106
[70] Stenzel M H,Davis T P. Aust. J. Chem. ,2003,56: 1035—
1038
[71] Nygard A,Davis T P,Barner-Kowollik C,Stenzel M H. Aust.
J. Chem. ,2005,58: 595—599
[72] Hayakawa T, Yokoyama H. Langmuir, 2005, 21: 10288—
10291
[73] Cui L,Xuan Y,Li X,Ding Y,Li B,Han Y C. Langmuir,
2005,21: 11696—11703
[74] Cui L,Peng J,Ding Y,Li X,Han Y C. Polymer,2005,46:
5334—5340

[1] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[2] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[3] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[4] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[5] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[6] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[7] 王斐然, 蒋峰景. 全钒液流电池离子导电膜[J]. 化学进展, 2021, 33(3): 462-470.
[8] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[9] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[10] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[11] 智康康, 杨鑫. 天然产物凝胶及其凝胶质[J]. 化学进展, 2019, 31(9): 1314-1328.
[12] 林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 多肽超分子手性自组装与应用[J]. 化学进展, 2019, 31(12): 1623-1636.
[13] 刘耀华, 刘育. 基于偶氮功能基的光控超分子组装[J]. 化学进展, 2019, 31(11): 1528-1539.
[14] 徐子悦, 张运昌, 林佳乐, 王辉, 张丹维, 黎占亭. 药物输送体系构筑中的超分子组装策略[J]. 化学进展, 2019, 31(11): 1540-1549.
[15] 郭家田, 卢玉超, 毕晨, 樊佳婷, 许国贺, 马晶军. 刺激响应型肽自组装及其应用[J]. 化学进展, 2019, 31(1): 83-93.