English
新闻公告
More
化学进展 2010, Vol. 22 Issue (09): 1741-1752 前一篇   后一篇

• 综述与评论 •

基于小分子的汞离子荧光探针*

史慧芳1  赵强1,2   安众福1   许文娟1  刘淑娟1**  黄维1**   

  1. (1. 南京邮电大学信息材料与纳米技术研究院 江苏省有机电子与信息显示重点实验室南京 210046 ;2. 南京大学配位化学国家重点实验室 南京 210093)
  • 收稿日期:2009-11-20 修回日期:2010-01-30 出版日期:2010-09-24 发布日期:2010-10-20
  • 通讯作者: 黄维 E-mail:iamwhuang@njupt.edu.cn
  • 基金资助:

    国家重大科学研究计划;国家自然科学基金;江苏省高校自然科学基础研究面上项目

Fluorescent Probes for Mercury Ion Based on Small Molecules

Shi Huifang1   Zhao Qiang1,2  An Zhongfu1  Xu WenjuanLiu Shujuan1** Huang Wei1**   

  1. (1.Nanjing University of Posts & Telecommunications (NUPT), Institute of Advanced Materials (IAM),  Key Lab for Organic Electronics & Information Displays, Nanjing , 210003,China; 2.Nanjing University, State Key Laboratory of Coordination Chemistry, Nanjing, 210093, China )
  • Received:2009-11-20 Revised:2010-01-30 Online:2010-09-24 Published:2010-10-20
  • Contact: Huang Wei E-mail:iamwhuang@njupt.edu.cn

汞离子(Hg2+)作为一种极具生理毒性的化学物质,其检测方法在传感领域得到了广泛的研究。荧光探针由于具有高效灵敏、快速便捷检测等优点而成为Hg2+检测的重要手段之一。通过Hg2+与探针特征的结合位点作用,引起其光物理性质的变化,从而实现对Hg2+的高选择性识别。本文综述了近年来小分子Hg2+荧光探针的研究进展。文中着重总结了Hg2+荧光探针分子的设计原理、检测机制及应用方法;评述了这些化合物的结构和检测性能之间的关系;最后展望了Hg2+荧光探针的研究和发展方向。

As one of the most toxic heavy metals, mercury ion causes severe environmental and healthy problems. Hence, its sensing methods have been widely studied. Due to their unique advantages, such as high sensitivity, low cost and fast detection, fluorescent probes have been one of the most important sensing methods of mercury ion. The mercury ion could be coordinated with specific receptors of fluorescent probes. Such complexation causes the changes of photophysical properties and realizes highly selective mercury ion detection. Herein, fluorescent probes for mercury ion based on small molecules reported in recent years have been reviewed. The design principles of probe materials, as well as their sensing mechanisms and applications are summarized. The structure-property relationships are also elucidated. Finally, the development and prospect are foreseen in the field of mercury ion probes.

Contents
1. Introduction
2. Design principles
3. The progress of fluorescent probes on mercury ion
3.1 Turn-off  fluorescent probes on mercury ion
3.2 Turn-on  fluorescent probes on mercury ion
3.3 Radiometric  fluorescent probes on mercury ion
4. Conclusion and outlook

中图分类号: 

()

[1 ] Nolan E M,Lippard S J. Chem. Rev. ,2008,108: 3443—
3480
[2 ] Zhao Q,Cao T Y,Li F Y,Li X H,Jing H,Yi T,Huang C H.
Organometallics,2007,26: 2077—2081
[3 ] Han S B,Zhu M,Yuan Z B,Li X. Biosens. Bioelectron,
2001,16: 9—16
[4 ] Burress C N,Bodine M I,Elbjeirami O,Reibenspies J H,
Omary M A,Gabbai F P. Inorg. Chem. ,2007,46: 1388—
1395
[5 ] Moon S Y,Youn N J,Park S M,Chang S K. J. Org. Chem. ,
2005,70: 2394—2397
[6 ] Park S M,Kim M H,Choe J I,No K T,Chang S K. J. Org.
Chem. ,2007,72: 3550—3553
[7 ] Song K C,Kim M H,Kim H J,Chang S K. Tetrahedron Lett. ,
2007,48: 7464—7468
[8 ] Yang Y,Jiang J H,Shen G L,Yu R Q. Anal. Chim. Acta,
2009,636: 83—88
[9 ] Li G K,Liu M,Yang G Q,Chen C F,Huang Z T. Chinese J.
Chem. ,2008,26: 1440—1446
[10] Pandey S,Azam A,Pandey S,Chawla H M. Org. & Biomo.
Chem. ,2009,7: 269—279
[11] Che Y,Yang X M,Zang L. Chem. Commun. ,2008,1413—
1415
[12] Zhu X J,Fu S T,Wong W K,Guo H P,Wong W Y. Angew
Chem. Int. Edit. ,2006,45: 3150—3154
[13] Juyoung Y,Norman E,Ohler A W C. Tetrahedron Lett. ,1997,
38: 3845—384
[14] Wu Z K,Zhang Y F,Ma J S,Yang G Q. Inorg. Chem. ,2006,
45: 3140—3142
[15] Saleh N. Luminescence,2009,24: 30—34
[16] Ha-thi M H,Penhoat M,Michelet V,Leray I. Org. Lett. ,
2007,9: 1133—1136
[17] Ha-thi M H,Penhoat M,Michelet V,Leray I. Org. & Biomo.
Chem. ,2009,7: 1665—1673
[18] De Silva A P,Nimal Gunaratne H Q,Gunnlaugsson T,Huxley A
J M,Mccoy C P. Chem. Rev. ,1997,97: 1515—1566
[19] Carraway E R,Demas N,Degraff B A D. Anal. Chem. ,1991,
63: 337—342
[20] Zhao Q,Liu S J,Li F Y,Yi T,Huang C H. Dalton Trans. ,
2008,3836—3840
[21] Costero A M, Andreu R, Monrabal E, Martinez-manez R,
Sancenon F,Soto J. J. Am. Chem. Soc. ,2002,1769—1775
[22] Metivier R, Leray I,Valeur B. Chem-Eur. J. ,2004,10:
4480—4490
[23] Kim J H,Hwang A R,Chang S K. Tetrahedron Lett. ,2004,
45: 7557—7561
[24] Kim S H, Song K C, Ahn S, Kang Y S, Chang S K.
Tetrahedron Lett. ,2006,47: 497—500
[25] Wanichacheva N,Siriprumpoonthum M,Kamkaew A,Grudpan
K. Tetrahedron Lett. ,2009,50: 1783—1786
[26] Hennrich G,Walther W,Resch-genger U, Sonnenschein H.
Inorg. Chem. ,2001,40: 641—644
[27] Hennrich G,Sonnenschein H,Resch-genger U. J. Am. Chem.
Soc. ,1999,121: 5073—5074
[28] Lakowicz J R. Principles of Fluorescence Spectroscopy. 3rd ed.NY: Springer,2006. 67—69
[29] Shiraishi Y,Sumiya S,Kohno Y,Hirai T. J. Org. Chem. ,
2008,73: 8571—8574
[30] Zhang X,Shiraishi Y,Hirai T. Tetrahedron Lett. ,2007,48:
5455—5459
[31] Soh J H,Swamy K M,Kim S K,Kim S,Lee S H,Yoon J.
Tetrahedron Lett. ,2007,48: 5966—5969
[32] Huang W,Zhou P,Yan W B,He C,Xiong L Q,Li F Y,Duan
C Y. J. Environ. Monitor,2009,11: 330—335
[33] Romero T,Caballero A,Espinosa A,Tárraga A,Molina P.
Dalton Trans. ,2009,2121—2129
[34] Shunmugam R,Gabriel G J,Smith C E,Aamer K A,Tew G N.
Chem-Eur. J. ,2008,14: 3904—3907
[35] Kim S H,Kim J S,Park S M,Chang S K. Org. Lett. ,2006,
8: 371—374
[36] Liu L,Zhang G X,Xiang J F,Zhang D Q,Zhu D B. Org.
Lett. ,2008,10: 4581—4584
[37] Lee H N,Kim H N,Swamy K M,Park M S,Kim J,Lee H,
Lee K H, Park S, Yoon J. Tetrahedron Lett. ,2008,49:
1261—1265
[38] Ma L J,Li Y,Li L,Sun J,Tian C J,Wu Y Q. Chem.
Commun. ,2008,6345—6347
[39] Guo X F,Qian X H,Jia L H. J. Am. Chem. Soc. ,2004,
126: 2272—2273
[40] He G J,Zhao Y G,He C,Liu Y,Duan C Y. Inorg. Chem. ,
2008,47: 5169—5176
[41] Liu L,Zhang G X,Xiang J Z,Zhang D Q,Zhu D B. Org.
Lett. ,2008,10: 4581—4584
[42] Huang J H,Xu Y F,Qian X H. J. Org. Chem. ,2009,74:
2167—2170
[43] Chen X Q,Nam S W,Jou M J,Kim Y,Kim S J,Park S,Yoon
J. Org. Lett. ,2008,10: 5235—5238
[44] Huang W,Song C X,He C,Lv G J,Hu X Y,Zhu X,Duan C
Y. Inorg. Chem. ,2009,48: 5061—5072
[45] Yoon S H,Albers A E,Wong A P,Chang C J. J. Am. Chem.
Soc. ,2005,127: 16030—16031
[46] Tang B,Cui L J,Xu K H,Tong L L,Yang G W,An L G.
Chembiochem. ,2008,9: 1159—1164
[47] Zhang G X,Zhang D Q,Yin S W,Yang X D,Shuai Z,Zhu D
B. Chem. Commun. ,2005,2161—2163
[48] Mi-Young Chae,Czarnik W C. J. Am. Chem. Soc. ,1992,
114: 9704—9705
[49] Kim J H,Kim H J,Kim S H,Lee J H,Do J H,Kim H J,Lee
J H,Kim J S. Tetrahedron Lett. ,2009,50: 5958—5961
[50] Choi M G,Kim Y H,Namgoong J E,Chang S K. Chem.
Commun. ,2009,3560—3562
[51] Lee M H,Lee S W,Kim S H,Kang C,Kim J S. Org. Lett. ,
2009,11: 2101—2104
[52] Jiang W,Wang W. Chem. Commun. ,2009,3913—3915
[53] Lee D N,Kim G J,Kim H J. Tetrahedron Lett. ,2009,50:
4766—4768
[54] Liu W M,Xu L W,Zhang H Y,You J J,Zhang X L,Sheng R
L,Li H P,Wu S K,Wang P F. Org. & Biomo. Chem. ,2009,
7: 660—664
[55] Wu D Y,Huang W,Duan C Y,Lin Z H,Meng Q J. Inorg.
Chem. ,2007,46: 1538—1540
[56] Santra M,Ryu D,Chatterjee A,Ko S K,Shin I,Ahn K H.
Chem. Commun. ,2009,2115—2117
[57] Tang B,Ding B Y,Xu K H,Tong L L. Chem. Eur. J. ,2009,
15: 3147—3151
[58] Zhang X L,Xiao Y,Qian X H. Angew Chem. Int. Edit. ,
2008,47: 8025—8029
[59] Shang G Q, Gao X, Chen M X, Zheng H, Xu J G. J.
Fluoresc. ,2008,18: 1187—1192
[60] Zhu M,Yuan M J,Liu X F,Xu J L,Lv J,Huang C S,Liu H
B,Li Y L,Wang S,Zhu D B. Org. Lett. ,2008,10: 1481—
1484
[61] Dhir A,Bhalla V,Kumar M. Org. Lett. ,2008,10: 4891—
4894
[62] Suresh M,Mishra S,Mishra S K,Suresh E,Mandal A K,
Shrivastav A,Das A. Org. Lett. ,2009,11: 2740—2743
[63] Joshi B P,Park J,Lee W I,Lee K H. Talanta,2009,78:
903—909
[64] Rag P C,Darbha G K,Ray A. Plasmonics,2007,2: 173—183
[65] Jr L. Principles of Fluorescence Spectroscopy. 2nd ed. NY:
Plenum. 1999
[66] Liu S J,Fang C,Zhao Q,Fan Q L,Huang W. Macromol.
Rapid Comm. ,2008,29: 1212—1215
[67] Fang Z,Pu K Y,Liu B. Macromolecules,2008,41: 8380—
8387
[68] Suresh M,Shrivastav A,Mishra S,Suresh E,Das A. Org.
Lett. ,2008,10: 3013—3016
[69] Liu C W,Huang C C,Chang H T. Langmuir,2008,24:
8346—8350
[70] Long Y F,Jiang D L,Zhu X,Wang J X,Zhou F M. Anal.
Chem. ,2009,81: 2652—2657

[1] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[2] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[3] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[4] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[5] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[6] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[7] 李斌, 付艳艳, 程建功. 检测有机磷神经毒剂及模拟物的荧光探针[J]. 化学进展, 2021, 33(9): 1461-1472.
[8] 任春平, 聂雯, 冷俊强, 刘振波. 反应型次氯酸荧光探针[J]. 化学进展, 2021, 33(6): 942-957.
[9] 侯晓涵, 刘胜男, 高清志. 小分子荧光探针在绿色农药开发中的应用[J]. 化学进展, 2021, 33(6): 1035-1043.
[10] 党耶城, 冯杨振, 陈杜刚. 红光/近红外光硫醇荧光探针[J]. 化学进展, 2021, 33(5): 868-882.
[11] 吴云雪, 张衡益, 刘育. 偶氮苯衍生物探针在乏氧细胞成像中的应用[J]. 化学进展, 2021, 33(3): 331-340.
[12] 刘园园, 郭芸, 罗晓刚, 刘根炎, 孙琦. 近红外荧光探针检测金属离子、小分子和生物大分子[J]. 化学进展, 2021, 33(2): 199-215.
[13] 徐云雪, 刘仁发, 徐坤, 戴志飞. 手术导航用荧光探针[J]. 化学进展, 2021, 33(1): 52-65.
[14] 张继东, 刘阿晨, 陈娇, 袁光辉, 金华峰. 基于生物素的荧光有机小分子及其应用[J]. 化学进展, 2020, 32(5): 594-603.
[15] 王阳, 黄楚森, 贾能勤. 监测细胞微环境及活性分子的有机小分子荧光探针[J]. 化学进展, 2020, 32(2/3): 204-218.
阅读次数
全文


摘要

基于小分子的汞离子荧光探针*