English
新闻公告
More
化学进展 2010, Vol. 22 Issue (09): 1729-1734 前一篇   后一篇

• 综述与评论 •

含Bi(V)半导体化合物及其在多相光催化中的应用

张莉平  袁实  胡峰  常晓峰*   

  1. (南京航空航天大学 材料科学与技术学院 应用化学系 南京 211100)
  • 收稿日期:2009-12-28 修回日期:2010-04-12 出版日期:2010-09-24 发布日期:2010-10-20
  • 通讯作者: 常晓峰 E-mail:changxf@nuaa.edu.cn

Bismuth (V)-Contained Semiconductor Compounds and Their Applications in Heterogeneous Photocatalysis

Zhang Liping  Yuan Shi  Hu Feng  Chang Xiaofeng *   

  1. (Department of Applied Chemistry, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, P. R. China)
  • Received:2009-12-28 Revised:2010-04-12 Online:2010-09-24 Published:2010-10-20
  • Contact: Chang Xiaofeng E-mail:changxf@nuaa.edu.cn

含Bi(V)光催化剂由于其独特的电子/能带结构和光催化活性而引起人们的广泛关注。本文主要对以NaBiO3为代表的典型含Bi(V)等半导体化合物的制备方法,物化性质,光催化活性及光化学稳定性进行了综述。尽管其中的部分光催化剂在光催化过程中表现出极其优异的活性,然而其光化学条件下的不稳定性日益被人们所发现并被深入研究。最后,对含Bi(V)光催化剂今后的研究方向进行了展望。

The bismuth (V)-contained photocatalysts have aroused wide concern due to their unique electronic/energy band structures. In this paper, the preparation methods, physical-chemical properties, photocatalytic activities and chemical-stabilities during photocatalysis of the bismuth (V)-contained photocatalysts(as represented by NaBiO3) are reviewed. Some of these photocatalysts have excellent catalytic performance, but nevertheless, their chemical instabilities during photocatalysis have been found gradually and further studied. At last, the trend of Bismuth (V)-contained photocatalysts research is prospected.

Contents
1 Introduction
2 Bi(V)-contained semiconductor compounds and their application in heterogeneous photocatalysis
2.1 Preparation method of typical Bi(V)-contained semiconductor compounds
2.2 Heterogeneous photocatalytic activity of Bi(V)-contained semiconductor compounds
3 Chemical stability of Bi(V)-contained semiconductor compounds
4 Conclusion and outlook

中图分类号: 

()

1 ] Goodeve C F,Kitchener J A. Trans. Faraday Soc. ,1938,34:
570—579
[2 ] Pappas S P,Fischer R M. J. Paint Technol. ,1974,46: 65—
72
[3 ] Plotnikow J. Allgemeine Photochemie,2nd ed. ,Berlin: Walter
de Gruyter & Co. ,1936
[4 ] Fujishima A,Honda K. Nature,1972,238: 37—38[5 ] Carey J H,Lawrence J,Tosine H M. Bull. Environ. Contam.
Toxicol. ,1976,16: 697—701
[6 ] Pruden A L,Ollis D F. J. Catal. ,1983,82: 404—417
[7 ] Grtzel M. Nature,2001,414: 338—344
[8 ] Kisch H,Burgeth G,Macyk W. Adv. Inorg. Chem. ,2004,
56: 241—259
[9 ] Asahi R,Morikawa T,Ohwaki T,Aoki K,Taga Y. Science,
2001,293: 269—271
[10] Goodenough J B,Hamnett A,Dare-Edwards M P,Campet G,
Wright R D. Surf. Sci. ,1980,101: 531—540
[11] Blasse G,Dirksen G J,Korte P H M. Mater. Res. Bull. ,
1981,16: 991—998
[12] Kudo A,Omori K,Kato H. J. Am. Chem. Soc. ,1999,121:
11459—11467
[13] Tang J,Zou Z,Ye J. Catal. Lett. ,2004,92: 53—56
[14] Zhang C,Zhu Y. Chem. Mater. ,2005,17: 3537—3545
[15] Tang J,Zou Z,Ye J. Angew. Chem. Int. Ed. ,2004,43:
4463—4466
[16] Kumada N,Kinomura N,Sleight A W. Mater. Res. Bull. ,
2000,35: 2397—2402
[17] Pan J,Sun Y,Wan P,Wang Z,Liu X. Electrochim. Acta,
2006,51: 3118—3124
[18] Joachim E. Doctoral Dissertation of Friedrich Alexander
Universitt Erlangen Nürnberg,2008
[19] Kodialam S,Korthius V C,Hoffmann R D,Sleight A W. Mater.
Res. Bull. ,1992,27: 1379—1384
[20] Nguyen T N,Giaquinta D M,Davis W M, zur Loye H C.
Chem. Mater. ,1993,5: 1273—1276
[21] Trehoux J,Abraham F,Thomas D. Mater. Res. Bull. ,1982,
17: 1235—1243
[22] Kumada N,Takahashi N,Kinomura N. J. Solid State Chem. ,
1996,126: 121—126
[23] Kumada N,Kinomura N. Mater. Res. Bull. ,1993,28: 849—
854
[24] Postel M,Dunach E. Coord. Chem. Rev. ,1996,155: 127—
144
[25] Floresca R,Kurihara M,Watt D S,Demir A. J. Org. Chem. ,
1993,58: 2196—2200
[26] Lena J I C,Fernandez E M S,Ramani A,Birlirakis N,Barrero
A F,Arseniyadis S. Eur. J. Org. Chem. ,2005,683—700
[27] Muathen H A. Helv. Chim. Acta,2003,86: 164—168
[28] Kako T,Zou Z,Katagiri M,Ye J. Chem. Mater. ,2007,19:
198—202
[29] Irie H,Watanabe Y,Hashimoto K. J. Phys. Chem. B,2003,
107: 5483—5486
[30] Niu J F,Sun P,Schramm K W. J. Photochem. Photobio. A:
Chem. ,2007,186: 93—98
[31] Niu J F,Wang L L,Yang Z F. Ecotox. Environ. Safe. ,2007,
66: 272—277
[32] Kou J,Zhang H,Li Z,Ou-Yang S,Ye J,Zou Z. Catal. Lett. ,
2008,122: 131—137
[33] Yu K,Yang S,He H,Sun C,Gu C,Ju Y. J. Phys. Chem.
A,2009,113: 10024—10032
[34] Tang Z,Yang Z, Shen Z,Niu J. Bull. Environ. Contam.
Toxicol. ,2007,78: 158—162
[35] Chang X F, Ji G B, Sui Q,Huang J,Yu G. J. Hazard.
Mater. ,2009,166: 728—733
[36] 邹志刚( Zou Z G) ,陈延峰( Chen Y F) ,叶金花( Ye J H) .
ZL03158264. 8,2005
[37] Kikugawa N,Yang L,Matsumoto T,Ye J. J. Mater. Res. ,
2010,25: 177—181
[38] Chang X F,Ji G B,Shen K,Pan L J,Shi Y,Zheng Y D. J.
Alloys Compd. ,2009,482: 240—245
[39] Ng C H B,Fan W Y. J. Phys. Chem. B,2006,110: 20801—
20807
[40] Peng F,Chen C,Yu H,Wang H,Yang J. Mater. Chem.
Phys. ,2009,116: 294—299
[41] 魏平玉(Wei P Y) ,杨青林( Yang Q L) ,郭林( Guo L) . 化学
进展( Prog. Chem. ) ,2009,21: 1734—1741
[42] Zhang K,Liu C,Huang F,Zheng C,Wang W. Appl. Catal.
B: Environ. ,2006,68: 125—129
[43] Wang W,Huang F,Lin X. Scripta Mater. ,2007,56: 669—
672
[44] Wang W,Huang F,Lin X,Yang J. Catal. Commun. ,2008,
9: 8—12
[45] Chang X F,Yu G,Huang J,Li Z,Zhu S F,Yu P F,Cheng C,
Deng S B,Ji G B. Catal. Today,2010,153: 193—199
[46] Tang J,Zou Z,Ye J. J. Phys. Chem. C,2007,111: 12779—
12785
[47] Lakshminarasimhan N,Park Y,Choi W. Chem. Phys. Lett. ,
2008,452: 264—268
[48] Mizoguchi H,Kawazoe H,Hosono H,Fujitsu S. Solid State
Commun. ,1997,104: 705—708
[49] Tang J,Zou Z,Ye J. Res. Chem. Intermed. ,2005,31: 499—
504
[50] Sepulveda-Guzman S,Elizondo-Villarreal N,Ferrer D,Torres-
Castro A,Gao X,Zhou J,Jose-Yacaman M. Nanotechnology,
2007,18: art. no. 335604
[51] Chang X F,Huang J,Cheng C,Sha W,Li X,Ji G B,Deng S
B,Yu G. J. Hazard. Mater. ,2010,173: 765—772
[52] Chang X F,Huang J,Cheng C,Sui Q,Sha W,Ji G B,Deng S
B,Yu G. Catal. Commun. ,2010,11: 460—464

[1] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[2] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[3] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[4] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[5] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[6] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[7] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[8] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[9] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[10] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[11] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[12] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[13] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[14] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[15] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.