English
新闻公告
More
化学进展 2010, Vol. 22 Issue (09): 1701-1708 前一篇   后一篇

• 综述与评论 •

过渡金属磷化物的制备和催化性能研究*

刘理华  李广慈  刘迪  柳云骐  刘晨光**   

  1. (中国石油大学重质油国家重点实验室,CNPC催化重点实验室,山东青岛,266555)
  • 收稿日期:2009-12-07 修回日期:2010-03-10 出版日期:2010-09-24 发布日期:2010-10-20
  • 通讯作者: 刘晨光 E-mail:cgliu@upc.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目

Preparation and Catalytic Performance of the Transition Metal Phosphides

Liu Lihua  Li Guangci   Liu Di   Liu Yunqi   Liu Chenguang**   

  1. (State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis of CNPC, China University of Petroleum, Qingdao 266555, China )
  • Received:2009-12-07 Revised:2010-03-10 Online:2010-09-24 Published:2010-10-20
  • Contact: Liu Chenguang E-mail:cgliu@upc.edu.cn

原油的重质化和日益严格的环境法规使燃料油加氢精制技术面临新的挑战,过渡金属磷化物由于具有优异的加氢脱硫、加氢脱氮活性和稳定性成为催化材料领域研究的焦点,本文综述了过渡金属磷化物的制备方法、催化性能和活性相,在加氢脱硫过程中过渡金属磷化物表层可能被硫化形成磷硫相,其可能与磷化物的催化活性和稳定性有关,过渡金属磷化物催化剂有望成为MoS2催化剂之后的又一代深度加氢脱硫催化剂。

The diminishing quality of oil feedstocks coupled with increasingly more stringent environmental regulations limiting the content of sulfur in transportation fuels have given rise to a need for improved hydroprocessing technology. Transition metal phosphides have attracted attention not only because they have excellent reaction catalytic selectivity for deep hydrodesulfurization and hydrodenitrogenation, but also because they are much more stable than metal carbides and nitrides with regard to hydrogen sul?de. The present article intends to review recent progress in the fabrication, catalytic performance and active phase of transition metal phosphides. A surface phosphosul?de phase may be formed while the bulk structure of the phosphides is retained under hydrodesulfurization reaction conditions. The surface phosphosul?de phase may be responsible for the high and stable activity of the phosphide catalyst. These phosphide based catalysts are becoming an interesting and promising replacement for the traditional bimetallic systems such as Mo or W sul?de catalysts promoted with Ni or Co in this type of reaction. This approach provides considerable economical advantages as well as enhanced catalyst life times and higher activity. Contents 1 Introduction 2 The synthetic methods of the transition metal phosphides 2.1 The transition metal phosphides prepared by the hydrothermal method 2.2 The transition metal phosphides prepared by the temperature-programmed reduction 2.3 The transition metal phosphides prepared by the decomposition of hypophosphite precursor 3 The catalytic performance of the transition metal phosphides 4 Summary and perspective

中图分类号: 

()

[1 ] 李大东( Li D D ) ,蒋福康( Jiang F K ) . 中国工程科学
( Chinese Engineering Science) ,2003,5(3) : 6—14
[2 ] Chianelli R R,Siadati M H,de la Rosa M P,Berhault G,
Wilcoxon J P, Bearden R,Abrams B L. Catal. Rev. Sci.
Eng. ,2006,48(1) : 1—41
[3 ] Skrabalak S E,Suslick K S. J. Am. Chem. Soc. ,2005,127
(28) : 9990—9991
[4 ] Toba M,Miki Y,Kanda Y,Matsui T,Harada M,Yoshimura
Y. Catal. Today,2005,104(1) : 64—69
[5 ] Ishihara A,Mochizuki H,Lee J,Qian E W,Kabe T,Tatsumi
Y,Umehara K. J. Japan Petrol. Inst. ,2005,48 (3 ) : 137—
144
[6 ] Olivas A,Verduzco R,Alonso G,Fuentes S. Prepr. ACS Div.
Petro. Chem. ,2005,50(4) : 372—374
[7 ] Sun M,Nicosia D,Prins R. Catal. Today,2003,86 ( 1 /4 ) :
173—189
[8 ] An G,Chai Y,Zhong H,Zhang C,Liu C. Prepr. ACS Div.
Petro. Chem. ,2005,50(3) : 344—346
[9 ] Sun M,Nelson A E,Adjaye J. J. Phys. Chem. B,2006,110
(5) : 2310—2317
[10] Levy R L,Boudart M. Science,1973,181: 547—549
[11] Park J,Koo B,Hwang Y,Bae C,An K,Park J G,Park H M,
Hyeon T. Angew. Chem. Int. Ed. ,2004,43 ( 17 ) : 2282—
2285
[12] Qian C,Kim F,Ma L,Tsui F,Yang P,Liu J. J. Am. Chem.
Soc. ,2004,126 (4) : 1195—1198
[13] Park J,Koo B,Yoon K Y,Hwang Y,Kang M,Park J G,
Hyeon T. J. Am. Chem. Soc. ,2005,127(23) : 8433—8440
[14] Guan J,Wang Y,Qin M,Yang Y,Li X,Wang A. J. Solid
State Chem. ,2009,182(6) : 1550—1555
[15] Wang A,Qin M,Guan J,Wang L,Guo H,Li X,Wang Y,
Prins R,Hu Y. Angew. Chem. Int. Ed. ,2008,47 ( 32 ) :
6052—6054
[16] Liu S L,Liu X Z,Xu L Q,Qian Y T,Ma X C. J. Cryst.
Growth,2007,304(2) : 430—434
[17] Chen S C. Important Inorganic Reactions,3rd ed. Shanghai:
Shanghai Science and Technology Press,1994,1765
[18] Gao S M,Lu J,Chen N,Zhao Y,Xie Y. Chem. Commun. ,
2002,24: 3064—3065
[19] Ni Y H,Tao A,Hu G Z,Cao X F,Wei X W,Yang Z S.
Nanotech. ,2006,17: 5013—5018
[20] Hou H,Yang Q,Tan C,Ji G,Gu B,Xie Y. Chem. Lett. ,
2004,33 (10) : 1272—1273
[21] Hou H,Peng Q,Zhang S,Guo Q,Xie Y. Eur. J. Inorg.
Chem. ,2005 (13) : 2625—2630
[22] Wang X,Han K,Gao Y,Wan F,Jiang K. J. Cryst. Growth,
2007,307 (1) : 126—130
[23] Li W,Dhandapani B,Oyama S T. Chem. Lett. ,1998,27(3) :
207—208
[24] Clark P,Li W,Oyama S T. J. Catal. ,2001,200: 140—147
[25] Wang X,Clark P,Oyama S T. J. Catal. ,2002,208: 321—
331
[26] Stinner C,Prins R,Weber T. J. Catal. ,2001,202: 187—194
[27] Cheng R H,Shu Y,Li L,Zheng M,Wang X,Wang A,Zhang
T. Appl. Catal. A: Gen. ,2007,316(2) : 160—168
[28] Wang R,Smith K J. Appl. Catal. A: Gen. ,2009,361(1 /2) :
18—25
[29] Takahashi R, Sato S, Sodesawa T, Suzuki M, Ichikuni N.
Microporous Mesoporous Mater. ,2003,66(2 /3) : 197—208
[30] Clark P A,Oyama S T. J. Catal. ,2003,218(1) : 78—87
[31] Philliops D C,Sawhill S J,Self R,Bussell M E. J. Catal. ,
2002,207(2) : 266—273
[32] Kawai T,Sato S,Suzuki S,Chun W,Asakura K,Bando K,
Matsui T,Yoshimura Y,Kubota T,Okamoto Y,Lee Y,Oyama
S T. Chem. Lett. ,2003,32(10) : 956—957
[33] Shu Y,Oyama S T. Carbon,2004,43: 1517—1532
[34] Wang A,Ruan L,Teng Y,Li X,Lu M,Ren J,Wang Y,Hu
Y. J. Catal. ,2005,229(2) : 314—321
[35] Stinner C,Tang Z,Haouas M,Weber T,Prins R. J. Catal. ,
2002,208(2) : 456—466
[36] Clark P,Li W,Oyama S T. J. Catal. ,2001,200 (1 ) : 140—
147
[37] Wang X,Clark P,Oyama S T. J. Catal. ,2002,208 ( 2 ) :
321—331
[38] Clark P,Wang X,Oyama S T. J. Catal. ,2002,207 ( 2 ) :
256—265
[39] Sawhill S J,Phillips D C,Bussell M E. J. Catal. ,2003,215
(2) : 208—219
[40] Rodriguez J A,Kim J Y,Hanson J C,Sawhill S J,Bussell M E.
J. Phys. Chem. B,2003,107(26) : 6276—6285
[41] Yang S,Liang C,Prins R. J. Catal. ,2006,237 ( 1 ) : 118—
130
[42] Berhault G, Afanasiev P, Loboue H, Geantet C, Cseri T,
Pichon C,Guillot-Deudon C,Lafond A. Inorg. Chem. ,2009,
48(7) : 2985—2992
[43] Sawhill S J,Layman K A,van Wyk D R,Engelhard M H,Wang
C,Bussell M E. J. Catal. ,2005,231(2) : 300—313
[44] Mangnus P J,van Veen J A R,Eijsbouts S. Appl. Catal. ,
1990,61(1) : 99—122
[45] Stinner C,Tang Z,Haouas M,Weber T,Prins R. J. Catal. ,
2002,208(2) : 456—466
[46] Iwamoto R,Grimblot J. Adv. Catal. ,1999,44: 417—503
[47] Shi G J,Shen J Y. J. Mater. Chem. ,2009,19: 2295—2297
[48] Guan Q X,Li W,Zhang M H,Tao K Y. J. Catal. ,2009,263
(1) : 1—3
[49] Shi G J,Shen J Y. Catal. Commun. ,2009,10: 1693—1696
[50] Brock S L,Perera S C,Stamm K L. Chem. Eur. J. ,2004,10
(14) : 3364—3371
[51] Gregg K A,Perera S C,Lawes G,Shinozaki S,Brock S L.
Chem. Mater. ,2006,18(4) : 879—886
[52] Ji N,Zhang T,Zheng M,Wang A,Wang H,Wang X,Chen J
G. Angew. Chem. Int. Ed. ,2008,47(44) : 8510—8513
[53] Liu X G,Chen J X,Zhang J Y. Ind. Eng. Chem. Res. ,2008,
47(15) : 5362—5368
[54] Zhou S J,Chen J X,Liu X G,Zhang J Y. Chinese Journal of
Catalysis,2007,28(6) : 498—500
[55] Liu X G,Chen J X,Zhang J Y. Catal. Commun. ,2007,8
(12) : 1905—1909
[56] Chen J,Zhou S,Ci D,Zhang J,Wang R,Zhang J. Ind. Eng.
Chem. Res. ,2009,48(8) : 3812—3819
[57] Robinson W R A M,van Gastel J N M,Koranyi T I,Eijsbouts
S,van der Kraan A M,van Veen J A R,de Beer V H J. J.
Catal. ,1996,161 (2) : 539—550
[58] Stinner C,Prins R,Weber T. J. Catal. ,2001,202(1) : 187—
194
[59] Wang X,Clark P,Oyama S T. J. Catal. ,2002,208 ( 2 ) :
321—331
[60] Oyama S T. J. Catal. ,2003,216(1 /2) : 343—352
[61] Oyama S T,Wang X,Lee Y K,Bando K,Requejo F G. J.
Catal. ,2002,210(1) : 207—217
[62] Oyama S T,Wang X,Lee Y K,Chun W J. J. Catal. ,2004,
221(2) : 263—273
[63] Prins R,Jian M,Fleehsenha M. Polyhedron,1997,16 ( 18 ) :
3235—3246
[64] Lu M H,Wang A J,Li X,Duan X,Teng Y,Wang Y,Song C,
Hu Y. Energy & Fuels,2007,21(2) : 554—560
[65] Satterfield C N,Cocchetto J F. Ind. Eng. Chem. Proc. Des.
Dev. ,1981,20(1) : 53—62
[66] Nava R,Morales J,Alonso G,Ornelas C,Pawelec B,Fierro J L
G. Appl. Catal. A,2007,321(1) : 58—70
[67] Maity S K,Flores G A,Ancheyta J,Rana M S. Catal. Today,
2008,130(2 /4) : 374—381
[68] Lewis J M,Kydd R A,Boorman P M,Rhyn P. Appl. Catal. A,
1992,84(2) : 103—121
[69] Prins R. Adv. Catal. ,2002,46: 399—464
[70] Lélias M A,Kooyman P J,Mariey L,Oliviero L,Travert A,van
Gestel J,van Veen J A R,Mange F. J. Catal. ,2009,267(1) :
14—23
[71] Stinner C,Prins R,Weber T. J. Catal. ,2001,202(1) : 187—
194
[72] Yang S,Liang C,Prins R. J. Catal. ,2006,237 ( 1 ) : 118—
130
[73] Layman K A,Bussell M E. J. Phys. Chem. B,2004,108
(30) : 10930—10941
[74] Oyama S T,Wang X,Lee Y K,Bando K,Requejo F G. J.
Catal. ,2002,210(1) : 207—217
[75] Oyama S T,Wang X,Lee Y K,Chun W J. J. Catal. ,2004,
221(2) : 263—273
[76] Sun F,Wu W,Wu Z,Guo J,Wei Z,Yang Y,Jiang Z,Tian
F,Li C. J. Catal. ,2004,228(2) : 298—310
[77] Nelson A E,Sun M,Junaid A S M. J. Catal. ,2006,241(1) :
180—188
[78] Oyama S T,Lee Y K. J. Catal. ,2008,258(2) : 393—400
[79] Rundqvist S. Acta Chem. Scand. ,1962,16: 992—998
[80] Guerin P R,Sergent M. Acta Crystallogr. Sect. B,1977,33:
2820—2823

[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[3] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[4] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[5] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[6] 岳长乐, 鲍文静, 梁吉雷, 柳云骐, 孙道峰, 卢玉坤. 多酸基硫化态催化剂的加氢脱硫和电解水析氢应用[J]. 化学进展, 2022, 34(5): 1061-1075.
[7] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[8] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[9] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[10] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[11] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[12] 陈立忠, 龚巧彬, 陈哲. 超薄二维MOF纳米材料的制备和应用[J]. 化学进展, 2021, 33(8): 1280-1292.
[13] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[14] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[15] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.