English
新闻公告
More
化学进展 2010, Vol. 22 Issue (07): 1490-1498 前一篇   后一篇

• 特约稿 •

环境友好的可控自由基聚合*

蔡远利**  卢礼灿  姜稳定  张海佳  邓俊杰  李瑶华  石毅   

  1. ( 环境友好化学与应用教育部重点实验室 高分子材料应用技术湖南省重点实验室 先进功能高分子 材料湖南省普通高等学校重点实验室 湘潭大学化学学院    湘潭 411105)
  • 收稿日期:2010-01-25 出版日期:2010-07-24 发布日期:2010-07-02
  • 通讯作者: 蔡远利 E-mail:ylcai98@xtu.edu.cn
  • 基金资助:

    国家自然科学基金项目;高等学校博士学科点专项科研基金

Environmentally Friendly and Controlled Radical Polymerization

Cai  Yuanli**   Lu  Lican   Jiang  Wending   Zhang  Haijia   Deng  Junjie   LI  Yaohua   Shi  Yi   

  1. ( Key Laboratory of Enviornmentally Friendly Chemistry and Applicaitons of Ministry of Education, Key Laboratory of Polymeric Materials&Applicaiton Technology of Hunan Province, Key Laboratory of  Advanced Functional Ploymeric Materials of College of Human Province, College of Chemistry, Xiangtan University, Xiangtan 411105, China )
  • Received:2010-01-25 Online:2010-07-24 Published:2010-07-02
  • Contact: Cai Yuanli E-mail:ylcai98@xtu.edu.cn

近年来,我们以环境友好、简便快捷、活泼可控、单体普适性强的光活化室温RAFT聚合为主攻目标,针对长波紫外或可见光活化室温RAFT聚合反应特征及其应用展开了深入探讨。研究表明,作为RAFT聚合链转移剂的硫酯化合物具有分别在紫外光和可见光波段的双波段光吸收特征。短波紫外光强吸收,导致硫酯键的光解。然而,可见光波段弱的光吸收则活化其自由基加成产物的断裂反应,加速室温RAFT过程并确保聚合反应的活性特征。高效光引发,可显著缩短RAFT聚合引发期。通过光开关,可实时启动或终止聚合。与常规热聚合不同,室温以下这类聚合反应不存在明显的热活化效应。由此,我们创建了环境友好、单体普适性强、快速可控、通过光开关可实时控制聚合反应启动或终止的光活化室温RAFT聚合,将其成功拓展到太阳光和水溶液聚合体系,并运用于温和条件下新兴水溶性温敏高分子、仿生光响应高分子的快捷可控合成。

In recent years, our work focused on the development of light-activating ambient temperature RAFT polymerization to be environmentally friendly, facile and rapid, living and well-controlled, and suitable for a variety of monomers. Our results demonstrate that as chain transfer agents(CTA) of RAFT polymerization, the thiocarbonylthio compounds exhibit absorptions separately in UV and visible light ranges. The strong UV absorption leads to the photolysis of CTA functionalities, but the weak absorption in visible light wave range may significantly activate the fragmentation reaction of their intermediate radicals, thus accelerate the RAFT process without loss of its living character. High efficiency of photo-initiation may significantly shorten the initialization period. Thermo-activation of this polymerization is negligible below 30oC. This polymerization immediately starts or ceases upon switching on or off this visible light. Accordingly, we exploited a facile, rapid and well-controlled visible light activating ambient temperature RAFT polymerization. This environmently friendly approach may extend to the solar light activation or in aqueous solution, and for the synthesis of thermo-responsive water-soluble polymers and biomimetic photo-responsive polymers.

Contents 
1 Introduction 
2 Our opportunity: UV-vis spectra characters of chain transfer agents for RAFT polymerization 
3 Ambient temperature RAFT polymerization under long-wave UV radiation 
4 Ambient temperature RAFT polymerization under visible light radiation
5 Ambient temperature RAFT polymerization under solar light radiation
6 Ambient temperature RAFT polymerization in aqueous solution under long-wave UV radiation 
7 Applications of ambient temperature RAFT polymerization under visible light radiation 
7.1 Rapid and well-controlled synthesis of novel thermo-responsive water-soluble polymers 
7.2 Rapid and well-controlled synthesis of biomimetic photo-responsive functional polymers 
8 Conclusions and outlook

中图分类号: 

()

[1] Szwarc M. Nature, 1956, 176: 1168-1169 [2] Szwarc M, Levy M, Milkovich R. J. Am. Chem. Soc., 1956, 78: 2656–2657 [3] Georges M K, Veregin R P N, Kazmaier P M, Hamer G K. Macromolecules, 1993, 26: 2987–2988 [4] Matyjaszewski K, Xia J. Chem. Rev., 2001, 101: 2921–2990 [5] Kamigaito M, Ando T, Sawamoto M. Chem. Rev., 2001, 101: 3689–3745 [6] Chiefari J, Chong Y K, Ercole F, Krstina J, Jeffery J, Le T P T, et al. Macromolecules, 1998, 31: 5559–5562 [7] Braunecker W A, Matyjaszewski K. Prog. Polym. Sci.,2007, 32: 93-146 [8] Tsarevsky, N. V,, Matyjaszewski, K. Chem. Rev., 2007, 107: 2270-2299 [9] Xue Z, Linh N T B, Noh S K, Lyoo W S. Angew. Chem. Int. Ed., 2008, 47: 6426-6429 [10] Moad G, Rizzardo E, Thang S H. Acc. Chem. Res. 2008, 41: 1133–1142 [11] Quinn J F, Rizzardo E, Dais T P. Chem. Commun., 2001, 1044-1045 [12] Convertine A J, Lokitz B S, Vasileva Y, Myrick L J, Scales C W, Lowe A B, McCormick C L. Macromolecules, 2006, 39: 1724–1730 [13] Bai W, Zhang L, Bai R,; Zhang G. Macromol. Rapid Commun., 2008, 29: 562–566 [14] Bai R, You Y, Bai R, Pan C. Macromol. Rapid Commun., 2001, 22: 315-319 [15] Quinn J F, Barner L, Rizzardo E, Davis T P. J. Polym. Sci. Polym. Chem., 2002, 40: 19-25 [16] Chen G, Zhu X, Zhu J, Cheng Z. Macromol. Rapid Commun., 2004, 25: 818-824 [17] You Y, Hong C, Bai R, Pan C, Wang J. Macromol. Chem. Phys., 2002, 203: 477-483 [18] Quinn J F, Barner L, Barner-Kowollik C, Rizzardo E, Davis T P. Macromolecules, 2002, 35: 7620-7627. [19] Lu L, Zhang H, Yang N, Cai Y. Macromolecules, 2006, 39, 3770–3776 [20] Shi Y, Liu G, Gao H, Lu L, Cai Y. Macromolecules, 2009, 42: 3917–3926 [21] Lu L, Yang N, Cai Y. Chem. Commun., 2005, 5287-5288 [22] Zhang H, Deng J, Lu L, Cai Y. Macromolecules, 2007, 40: 9252-9261 [23] Yin H, Zheng H, Lu L, Liu P, Cai Y. J. Polym. Sci. Polym. Chem., 2007, 45: 5091-5102 [24] Jiang P, Shi Y, Liu P, Cai Y. J. Polym. Sci. Polym. Chem., 2007, 45: 2947–2958 [25] Jiang W, Lu L, Cai Y. Macromol. Rapid Commun. 2007, 28: 725-728 [26] Lowe A B, McCormick C L. Prog. Polym. Sci., 2007, 32: 283-351 [27] De P, Li M, Gondi S R, Sumerlin B S. J. Am. Chem. Soc., 2008, 130: 11288–11289 [28] Skaff H, Emrick T. Angew. Chem. Int. Ed., 2004, 43: 5383-5386 [29] Shi Y, Gao H, Lu L, Cai Y. Chem. Commun., 2009, 1368-1370 [30] Deng J, Shi Y, Jiang W, Peng Y, Lu L, Cai Y. Macromolecules, 2008, 41: 3007-3014 [31] Sun J, Peng Y, Chen Y, Liu Y, Deng J, Lu L, Cai Y. Macromolecules, submitted on Jan. 19, 2010 [32] Jia S, Fei J, Deng J, Cai Y, Li J, Sensors and Actuators B: Chemical, 2009, 138: 244-250 [33] Gao H, Zheng H, Chen X, Lu L, Cai Y. J. Am. Chem. Soc., submitted on Jan. 5, 2010 [34] Li Y, Tang Y, Yang K, Chen X, Lu L, Cai Y, Macromolecules, 2008, 41: 4597-4606 [35] Bohran B, Souto M L, Imai H, Shichida Y, Nakanishi K. Science, 2000, 288: 2209?2212 [36] Luo, Q, Zheng H, Peng Y, Gao H, Lu L, Cai Y. J. Polym. Sci. Polym. Chem., 2009, 47: 6668-6681

[1] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[2] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[3] 赵晓竹, 李雯, 赵学瑞, 何乃普, 李超, 张学辉. MOFs在乳液中的可控生长[J]. 化学进展, 2023, 35(1): 157-167.
[4] 李姝慧, 李倩倩, 李振. 从单分子到分子聚集态科学[J]. 化学进展, 2022, 34(7): 1554-1575.
[5] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[6] 王金凤, 李爱森, 李振. 室温磷光凝胶研究进展[J]. 化学进展, 2022, 34(3): 487-498.
[7] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[8] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[9] 龚筑轲, 许辉. 晶态咔唑基有机室温磷光材料[J]. 化学进展, 2022, 34(11): 2432-2461.
[10] 赵筱茜, 王聪, 田勇, 王秀芳. 微乳液法制备介孔碳材料[J]. 化学进展, 2022, 34(10): 2316-2328.
[11] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[12] 金士成, 闫爽. 金属氧化物室温气敏材料的结构调控及传感机理[J]. 化学进展, 2021, 33(12): 2348-2361.
[13] 孙连伟, 孙中鹤, 王雪, 徐林, 冯岸超, 张立群. 可控/“活性”自由基聚合制备聚乙烯及聚卤代烯烃[J]. 化学进展, 2020, 32(6): 727-737.
[14] 易享炎, 黄菲, JonathanB.Baell, 黄和, 于杨. 可见光催化C(sp 3)-C(sp 3)键的构筑[J]. 化学进展, 2019, 31(4): 505-515.
[15] 安俊健, 王梦玲, 黄梦璇, 王鹏, 张光彦. 纳米铁酸铋及其改性物的环境催化性能[J]. 化学进展, 2018, 30(9): 1298-1307.
阅读次数
全文


摘要

环境友好的可控自由基聚合*