English
新闻公告
More
化学进展 2010, Vol. 22 Issue (07): 1434-1441 前一篇   后一篇

• 特约稿 •

交叉脱氢偶联反应*

郭兴伟李志平1**  李朝军2**   

  1. (1.中国人民大学化学系   北京 100872;2. Department of Chemistry, McGill University, Montreal  H3A 2K6, Canada)
  • 收稿日期:2010-02-25 出版日期:2010-07-24 发布日期:2010-07-02
  • 通讯作者: 李志平,李朝军 E-mail:zhipingli@ruc.edu.cn; cjli@mcgill.cn
  • 基金资助:

    国家自然科学基金项目

Cross-Dehydrogenative-Coupling (CDC) Reaction

 Guo  Xinwei1  Li  Zhiping1**  Li  Zhaojun2**   

  1. ( 1.Department of Chemistry, Renmin University of China, Beijing 100872, China; 2. Department of Chemistry, McGill University, Montreal  H3A 2K6, Canada)
  • Received:2010-02-25 Online:2010-07-24 Published:2010-07-02
  • Contact: Li Zhiping, Li Zhaojun E-mail:zhipingli@ruc.edu.cn; cjli@mcgill.cn

发现高效高选择性的有机合成反应是有机合成化学研究中一个重要的发展方向。传统的有机合成化学是建立在官能团相互转化基础上的,又称官能团化学。非活泼化学键(如C-H键)的直接官能团化省去了一步甚至多步制备官能团化的反应底物,因此,非活泼化学键活化是提高有机合成反应效率的一个重要发展方向。交叉脱氢偶联(Cross-Dehydrogenative-Coupling,CDC)反应就是直接利用不同反应底物中的C-H键,在氧化条件下,进行脱氢偶联反应形成C-C键。交叉脱氢偶联反应实现了更短的合成路线和更高的原子利用效率,为直接利用简单的原料进行高效的复杂的有机合成任务提供了一种新的思路和手段。

The discovery of new synthetic methods is greatly significant in organic chemistry. Highly selective and efficient functionalization of C-H bonds has attracted much attention in academic and industrial chemistry in the past decade. C-H bond activation followed by C-C bond formation is one of the ideal synthetic methods from green chemistry point of view. Cross-coupling reactions are among the most important methods for forming C-C bonds. In order to attain successful cross-coupling products, one or two pre-functionalized reactants are generally required. Cross-dehydrogenative-coupling (CDC) reactions, which combine two C-H bonds to form new C-C bonds, avoid the need for preparing pre-functionalized materials and make syntheses simpler and more efficient. CDC chemistry has the potential to make significant contributions to green chemical synthesis.

Contents 
1 Introduction 
2 Cu-catalyzed CDC reactions 
2.1 sp3C-H-sp C-H coupling 
2.2 sp3C-H-sp2C-H coupling 
2.3 sp3C-H-sp3C-H coupling 
3 Fe-catalyzed CDC reactions 
3.1 sp3C-H-sp3C-H coupling 
3.2 sp3C-H-sp2C-H coupling 
3.3 sp3C-H-sp C-H coupling 
4 Other metal complex catalyzed CDC reactions 
5 Metal free CDC reactions 
6 Conclusions and outlook

中图分类号: 

()

[1 ] Corey E J,Cheng X M. The Logic of Chemical Synthesis. New
York: John Wiley & Sons,1989. 1—91
[2 ] Fleming I. Pericyclic Reactions. New York: Oxford University
Press,1999. 1—89
[3 ] ( a) Crabtree R H. The Organometallic Chemistry of Transition
Metals,4th ed. New York: Wiley Interscience,2005. 1—560;
( b) McQuillin F J,Parker D G,Stephenson G R. Transition
Metal Organometallics for Organic Synthesis. Cambridge,U K:
Cambridge University Press, 1991. 1—614; ( c ) Tsuji J.
Transition Metal Reagents and Catalysts: Innovations in Organic
Synthesis. Chichester,U K: Wiley,2002. 1—496
[4 ] ( a) Ritleng V,Sirlin C,Pfeffer M. Chem. Rev. ,2002,102:
1731—1770; ( b) Dyker G. Angew. Chem. Int. Ed. ,1999,
38: 1698—1712; ( c ) Naota T,Takaya H,Murahashi S I.
Chem. Rev. ,1998,98: 2599—2660; ( d) Chatani N,Asaumi
T,Yorimitsu S, et al. J. Am. Chem. Soc. ,2001, 123:
10935— 10941; ( e) Goossen L J. Angew. Chem. Int. Ed. ,
2002,41: 3775—3778; ( f ) Arndtsen B A,Bergman R G,
Mobley T A,et al. Acc. Chem. Res. ,1995,28: 154—162;
( g) Chen H,Schlecht S,Semple T C,et al. Science,2000,
287: 1995—1997; ( h ) Goldman A S. Nature,1993,366:
514—514; ( i) Ackermann L. Top. Organomet. Chem. ,2007,
24: 35—60
[5 ] ( a) Li C J. Acc. Chem. Res. ,2009,42: 335—344; ( b) Li
Z,Li C J. J. Am. Chem. Soc. ,2005,127: 3672—3673
[6 ] ( a) Cai G,Fu Y,Li Y,et al. J. Am. Chem. Soc. ,2007,
129: 7666—7673; ( b) Stuart D R,Fagnou K. Science,2007,
316: 1172—1175; ( c) Dwight T A,Rue N R,Charyk D,et
al. Org. Lett. ,2007,9: 3137—3139; ( d) Hull K L,Sanford
M S. J. Am. Chem. Soc. ,2007,129: 11904—11905; ( e)
Xia J B,You S L. Organometallics,2007,26: 4869—4871;
( f) Zhang H B,Liu L,Chen Y J,et al. Eur. J. Org. Chem. ,
2006,869—873; ( g) Jia C,Kitamura T,Fujiwara Y. Acc.
Chem. Res. ,2001,34: 633—639
[7 ] ( a) Li Z,Li C J. J. Am. Chem. Soc. ,2004,126: 11810—
11811; ( b ) Li C J,Li Z. Pure Appl. Chem. ,2006,78:
935—945
[8 ] ( a) Wei C,Li C J. Green Chem. ,2002,4: 39—41; ( b) Li
C J,Wei C. Chem. Commun. ,2002,268—269; ( c) Wei C,
Li C J. J. Am. Chem. Soc. ,2002,124: 5638—5639; ( d)
Koradin C,Polborn K,Knochel P. Angew. Chem. Int. Ed. ,
2002,41: 2535—2538
[9 ] Zhao L,Li C J. Angew. Chem. Int. Ed. ,2008,47: 7075—
7078
[10] Wyvratt M J. Clin. Physiol. Biochem. ,1988,6: 217—229
[11] Li Z,Li C J. J. Am. Chem. Soc. ,2005,127: 6968—6969
[12] Li Z,Bohle D S,Li C J. Proc. Natl. Acad. Sci. U. S. A. ,
2006,103: 8928—8933
[13] Li Z P,Li C J. Eur. J. Org. Chem. ,2005,3173—3176
[14] Li Z P,Cao L,Li C J. Angew. Chem. Int. Ed. ,2007,46:
6505—6507
[15] Li Z,Yu R, Li H. Angew. Chem. Int. Ed. , 2008, 47:
7497—7500
[16] Li H,He Z,Guo X,et al. Org. Lett. ,2009,11: 4176—4179
[17] Guo X,Yu R,Li H,et al. J. Am. Chem. Soc. ,2009,131:
17387—17393
[18] Guo X,Pan S, Liu J, et al. J. Org. Chem. ,2009,74:
8848—8851
[19] Volla C M R,Vogel P. Org. Lett. ,2009,11: 1701—1704
[20] Würtz S,Rakshit S,Glorius F,et al. Angew. Chem. Int. Ed. ,
2008,47: 7230—7233
[21] Stuart D R,Bertrand-Laperle M G,Fagnou K,et al. J. Am.
Chem. Soc. ,2008,130: 16474—16475
[22] Shi Z,Zhang C,Jiao N,et al. Angew. Chem. Int. Ed. ,2009,
48: 4572—4576
[23] Hull K L,Lanni E L,Sanford M S. J. Am. Chem. Soc. ,
2006,128: 14047—14049
[24] Deng G J,Li C J. Org. Lett. ,2009,11: 1171—1174
[25] Deng G,Ueda K,Yanagisawa S,et al. Chem. Eur. J. ,2009,
15: 333—337
[26] Sud A, Sureshkumar D, Klussmann M. Chem. Commun. ,
2009,3169—3171
[27] Zhang Y,Li C J. Angew. Chem. Int. Ed. ,2006,45: 1949—
1952
[28] Zhang Y,Li C J. J. Am. Chem. Soc. ,2006,128: 4242—
4243
[29] Tsang A S K,Todd M H. Tetrahedron Lett. ,2009,50: 1199—
1202
[30] Li Z P,Li H,Guo X,et al. Org. Lett. ,2008,10: 803—805

[1] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[2] 戴立信*. Ullmann反应百年纪念及近期复兴——兼及碳-杂原子键的形成[J]. 化学进展, 2018, 30(9): 1257-1297.
[3] 花东龙, 庄晓煜, 童东绅, 俞卫华, 周春晖. 催化甘油脱水氧化连串反应制丙烯酸[J]. 化学进展, 2016, 28(2/3): 375-390.
[4] 郭瑞梅, 白金泉, 张恒, 谢亚勃, 李建荣. 金属-有机骨架材料在催化氧化反应中的应用[J]. 化学进展, 2016, 28(2/3): 232-243.
[5] 王秀君*, 李欣, 唐修文. Nrf2通路在肿瘤化学预防中的研究进展[J]. 化学进展, 2013, 25(09): 1544-1552.
[6] 沈金海, 程国林, 崔秀灵*. 基于钯催化C-H键活化的多米诺反应[J]. 化学进展, 2012, 24(07): 1324-1336.
[7] 杨连成, 齐向阳, 徐龙鹤. Pd催化交叉偶联P-C键形成反应[J]. 化学进展, 2011, 23(5): 893-902.
[8] 段东红 孙彦平. 直接硼氢化物燃料电池(DBFC)阳极材料及反应机理*[J]. 化学进展, 2010, 22(09): 1720-1728.
[9] 李湖 施章杰. 基于钯催化的C—H选择性官能团化构建C—C键*[J]. 化学进展, 2010, 22(07): 1414-1433.
[10] 杨贯羽,郭彦春,武光辉,郑立稳,宋毛平. 氮氧自由基TEMPO:选择氧化醇的高效有机小分子催化剂*[J]. 化学进展, 2007, 19(11): 1727-1735.
[11] 王兰芝,佘远斌,徐未未,张燕慧,纪红兵. 金属卟啉类模拟酶催化剂研究[J]. 化学进展, 2005, 17(04): 678-685.
[12] 郭新闻,王祥生,张义华. 钛硅催化材料的研究进展Ⅰ.钛硅混合氧化物的制备与催化性能[J]. 化学进展, 2001, 13(01): 19-.
[13] 徐宏. 过硼酸钠在有机物选择性氧化反应中的应用[J]. 化学进展, 2000, 12(02): 192-.
阅读次数
全文


摘要

交叉脱氢偶联反应*