English
新闻公告
More
化学进展 2010, Vol. 22 Issue (07): 1286-1294 前一篇   后一篇

• 特约稿 •

CO2/H2O混合绿色介质中的有机催化反应*

武素香   樊红雷   程燕   王前   韩布兴**   

  1. ( 中国科学院化学研究所    北京  100190 )
  • 收稿日期:2010-03-02 出版日期:2010-07-24 发布日期:2010-07-02
  • 通讯作者: 韩布兴 E-mail:hanbx@iccas.ac.cn
  • 基金资助:

    国家自然科学基金;国家重点基础研究发展计划(973)项目;中国科学院方向性项目

Catalytic Organic Reactions in CO2/H2O Medium

Wu Suxiang    Fan Honglei    Cheng Yan    Wang Qian    Han Buxing**   

  1. ( Institute of Chemistry Chinese Academy of Science, Beijing 100190, China )
  • Received:2010-03-02 Online:2010-07-24 Published:2010-07-02
  • Contact: Han Buxing E-mail:hanbx@iccas.ac.cn

绿色化学是化学发展的必然趋势。有效利用绿色溶剂是绿色化学的重要内容。CO2和H2O混合体系是具有许多特点的绿色反应介质,可以用于不同化学反应,特别是弱酸催化的反应,从而替代传统的有机和无机酸。本文讨论了在CO2/H2O体系的酸性随温度和压力的变化,综述了在CO2/H2O混合绿色介质中有机化学反应研究进展,这些反应包括脱水反应、烷基化反应、香茅醛环化反应、重氮化反应、多元醇转化为环醚的反应、溴氮化反应、芳硝基化合物选择性还原、多糖水解反应、生物质转化反应、环氧丙烷水解反应、脱羧反应、醇氧化反应、对映选择氧化反应以及酮不对称还原;最后对CO2/H2O体系在化学反应中应用的发展趋势进行了探讨。

Green chemistry is the trend of chemistry in the future. Utilization of green solvents effectively is one of the important topic in green chemistry. CO2/H2O is green reaction medium of some unique features, and can be used in different chemical reactions. Especially, it can be used in the reactions catalyzed by weak acids, in which use of conventional acids can be avoided. In this review, we first discuss the variation of the acidity CO2/H2O system with temperature and pressure, then some chemical reactions in CO2/H2O system are discussed, including dehydration reaction, alkylation reaction, citronellal cyclization reaction,diazonium reaction, conversion of polyalcohol to cyclic ether, oxybromination reaction, selective reduction of nitroarenes, polysaccharide hydrolysis, conversion of biomass, hydrolysis of propylene oxide, decarboxylation reaction, oxidation of alcohols, enantioselective sulfoxidation, asymmetric reduction of ketones. Finallly, the future directions for the application of CO2/H2O system in chemical reaction are discussed briefly.

Contents 
1 Introduction 
2 Acidity changes in CO2/H2
3 Chemical reactions in CO2/H2
3.1 Dehydration reaction and alkylation reaction 
3.2 Citronellal cyclization reaction 
3.3 Diazonium reaction 
3.4 Coversation of polyalcohol to cyclic ether 
3.5 Oybromination reaction 
3.6 Selective reduction of nitroarenes 
3.7 Polysaccharide hydrolysis 
3.8 Conversation of biomass and hydrolysis of propylene oxide 
3.9 Decarboxylation reaction
3.10 Oxidation of alcohols 
3.11 Enantioselective sulfoxidation 
3.12 Asymmetric reduction of ketones 
4 Conclusions and outlook

中图分类号: 

()

[1 ] Poliakoff M, Fitzpatrick J M, Farren T R, Anastas P T.
Science,2002,297: 807—810
[2 ] Toda M,Takagaki A,Okamura M,Kondo J N,Hayashi S,
Domen K,Hara M. Nature,2005,438: 178—178
[3 ] Tundo P, Perosa A, Zecchini F. Methods and Reagents for
Green Chemistry: An Introduction. Hoboken,New Jersey: John
Wiley & Sons,Inc. ,2007
[4 ] Licence P,Gray W K,Sokolova M,Poliakoff M. J. Am. Chem.
Soc. ,2005,127: 293—298
[5 ] Liu H Z,Jiang T,Han B X,Liang S G,Zhou Y X. Science,
2009,326: 1250—1252
[6 ] Sabine K,Axel B,Walter L,Andreas P. J. Am. Chem. Soc. ,
1999,121: 6421—6429
[7 ] Wu T B,Jiang T,Hu B J,Han B X,He J L,Zhou X S. Green
Chem. ,2009,11: 798—803
[8 ] He L N,Hiroyuki Y,Toshiyasu S. Green Chem. ,2003,5:
92—94
[9 ] Liu R X,Zhao F Y, Fujita S, Arai M. Appl. Catal. , A:
General,2007,316: 127—133
[10] He J L,Wu T B,Jiang T,Zhou X S,Hu B J,Han B X. Catal.
Commun. ,2008,9: 2239—2243
[11] Sawada T,Nakayama S,Kawai-Nakamura A,Sue K,Iwamura
H,Hiaki T. Green Chem. ,2009,11: 1675—1680
[12] Broll D,Kaul C,Kramer A,Krammer P,Richter T,Jung M,
Vogel H, Zehner P. Angew. Chem. Int. Ed. ,1999,38:
2998—3014
[13] Geletii Y V, Besson C,Hou Y, Yin Q S,Musaev D G,
Quionero D,Cao R,Hardcastle K I,Proust A,Kgerler P,Hill
C L. J. Am. Chem. Soc. ,2009,131 (47) : 17360—17370
[14] Cheng Y,Fan H L,Wu S X,Wang Q,Guo J,Gao L,Zong B
N,Han B X. Green Chem. ,2009,11: 1061 — 1065
[15] Oka H,Yamago S,Yoshida J,Kajimoto O. Angew. Chem. Int.
Ed. ,2002,41: 623—625
[16] Zheng Z L,Perkins B L,Ni B. J. Am. Chem. Soc. ,2010,
132 (1) : 50—51
[17] Ho C M,Zhang J L,Zhou C Y,Chan O Y,Yan J J,Zhang F
Y,Huang J S,Che C M. J. Am. Chem. Soc. ,2010,132
(6) : 1886—1894
[18] Eghbali N,Li C J. Green Chem. ,2007,9: 213—215
[19] Li C J. Angew. Chem. Int. Ed. ,2003,42: 4856 —4858
[20] Sun J,Ren J Y,Zhang S J,Cheng W G. Tetrahedron Lett. ,
2009,50: 423—426
[21] Sebastian W,Schtz A,Grass R N, Stark W J,Reiser O.
Angew. Chem. Int. Ed. ,2010,49: 1867 —1870
[22] Olivier B,Li C J. Green Chem. ,2007,9: 1047—1050
[23] Liu Y L,Liu L,Wang Y L,Han Y C,Wang D,Chen Y J.
Green Chem. ,2008,10: 635—640
[24] 周玉青( Zhou Y Q) ,查正银( Cha Z Y) ,徐晓岚( Xu X L) ,
汪志勇( Wang Z Y) . 中国科学技术大学学报( Journal of
University of Science and Technology of China) ,2008,38(6 ) :
647—655
[25] Herrerías C I,Yao X Q,Li Z P,Li C J. Chem. Rev. ,2007,
107: 2546—2562
[26] Katritzky A R,Allin S M,Siskin M. Acc. Chem. Res. ,1996,
29: 399—406
[27] Akiya N,Savage P E. Chem. Rev. ,2002,102: 2725—2750
[28] Savage P E. Chem. Rev. ,1999,99: 603—622
[29] Jessop P G,Leitner W. Chemical Synthesis Using Supercritical
Fluids. Weinheim: Wiley-VCH,1999
[30] 韩布兴(Han B X) . 超临界流体科学与技术( Supercritical
Fluid Science & Technology ) . 北京: 中国石化出版社
( Beijing: China Petrochemical Press)
[31] Roosen C,Ansorge-Schumacher M,Mang T,Leitner W,Greiner
L. Green Chem. ,2007,9: 455—458
[32] Toews K L,Shroll R M,Wai C M,Smart N G. Anal. Chem. ,
1995,67: 4040—4043
[33] Weikel R R,Hallett J P,Liotta C L,Eckert C A,Top. Catal. ,
2006,37: 75—80
[34] Hunter S E,Savage P E. Ind. Eng. Chem. Res. ,2003,42:
290—294
[35] Hunter S E,Savage P E. AIChE Journal,2008,54: 516—528
[36] Hunter S E,Ehrenberger C E,Savage P E. J. Org. Chem. ,
2006,71: 6229—6239
[37] Cheng H Y,Meng X C,Liu R X,Hao Y F,Yu Y C,Cai S X,
Zhao F Y. Green Chem. ,2009,11: 1227—1231
[38] Liu S J,Wang Y H,Jiang J Y,Jin Z L. Green Chem. ,2009,
11: 1397—1400
[39] Li G P,Jiang H F,Li J H. Green Chem. ,2001,3: 250—251
[40] Jiang H F,Huang X Z. J. Supercrit. Fluids,2007,43: 291—
294
[41] Miyazawa T, Funazukuri T. Biotechnol. Prog. , 2005, 21:
1782—1785
[42] Tundo P,Loris A,Selva M. Green Chem. ,2007,9: 777—779[43] Aleman P A,Boix C,Poliakoff M. Green Chem. ,1999,1:
65—68
[44] Rayner C M. Org. Process Res. Dev. ,2007,11: 121—132
[45] Yamaguchi A,Hiyoshi N,Sato O,Rode C V,Shirai M. Chem.
Lett. ,2008,37: 926—927
[46] Yamaguchi A,Hiyoshi N,Sato O,Bando K K,Shirai M. Green
Chem. ,2009,11: 48—52
[47] Ganchegui B,Leitner W. Green Chem. ,2007,9: 26—29
[48] Gao G,Tao Y,Jiang J Y. Green Chem. ,2008,10: 439—441
[49] Hunter S E,Savage S E. Chem. Eng. Sci. ,2004,59: 4903—
4909
[50] Burgemeister K F, Hugl H, Leitner W. Chem. Commun. ,
2005,6026—6028
[51] Jacobson G B,Lee C T,Johnston K P,Tumas W. J. Am.
Chem. Soc. ,1999,121: 11902—11903
[52] Li J H,Xie Y X,Yin D L. J. Org. Chem. ,2003,68: 9867—
9869
[53] Timko M T,Smith K A,Danheiser R L,Steinfeld J I. AIChE
J. ,2006,52: 1127—1141
[54] Leitner W. Pure Appl. Chem. ,2004,76: 635—644
[55] Ohde M,Ohde H,Wai C M. Langmuir,2005,21: 1738—1744
[56] Eckert C A,Liotta C L,Bush D,Brown J S,Hallett J P. J.
Phys. Chem. B,2004,108: 18108—18118
[57] Murray B S,Dickinson E,Clarke D A,Rayner C M. Chem.
Commun. ,2006,1410—1412
[58] Harada T,Kubota Y,Kamitanaka T,Nakamura K,Matsuda T.
Tetrahedron Lett. ,2009,50: 4934—4936
[59] Karmee S K,Roosen C,Kohlmann C, Lütz S,Greiner L,
Leitner W. Green Chem. ,2009,11: 1052—1055
[60] Liu R X,Wu C Y,Wang Q,Ming J,Hao Y F,Yu Y C,Zhao
F Y. Green Chem. ,2009,11: 979—985
[61] Wu S X,Fan H L,Xie Y,Cheng Y,Wang Q,Zhang Z F,Han
B X. Green Chem. ,2010,DOI: 10. 1039 /C002553D
[62] Miao C X,He L N,Wang J Q,Wang J L. Adv. Synth. Catal. ,
2009,351: 2209—2216
[63] Miao C X,He L N,Wang J L,Wu F. J. Org. Chem. ,2010,
75: 257—260
[64] Xu X D,Antal M J,Anderson D G M. Industrial & Engineering
Chemistry Research,1997,36: 3—41

[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[3] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[4] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[5] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[6] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[7] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[8] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[9] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[10] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[11] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[12] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[13] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[14] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[15] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.