English
新闻公告
More
化学进展 2010, Vol. 22 Issue (06): 1058-1067 前一篇   后一篇

• 综述与评论 •

纳米材料热力学的研究现状及其展望

姜俊颖; 黄在银**; 米艳; 李艳芬; 袁爱群   

  1. (广西民族大学化学与生态工程学院,南宁 530006)
  • 收稿日期:2009-07-30 修回日期:2009-10-18 出版日期:2010-06-24 发布日期:2010-05-05
  • 通讯作者: 黄在银 E-mail:hzy210@163.com

Recent Development and Prospect of Thermodynamics of Nanomaterials

Jiang Junying; Huang Zaiyin**; Mi Yan; Li Yanfen; Yuan Aiqun   

  1. (School of Chemistry and Ecological Engineering, Guangxi University for Nationalities, Nanning 530006, China)
  • Received:2009-07-30 Revised:2009-10-18 Online:2010-06-24 Published:2010-05-05
  • Contact: Huang Zaiyin E-mail:hzy210@163.com

本文分别从纳米材料的热容、晶格参数、结合能、内聚能、界面能、界面应力、热稳定性、熔点、熔解焓、熔解熵、相图及纳米材料参与反应时反应体系的化学平衡、吸附能等方面对纳米材料热力学的研究进展进行了阐述,并对纳米材料热力学的研究和应用前景进行了展望。

Nanomaterials have attracted great interest in recent years because of the unusual mechanical, electrical, optical, magnetic and surface properties. Recent investigations have also shown that nanoscale materials can offer advantages of certain physical and chemical effects. There is no doubt that the employments of materials are closely related to their thermodynamic properties which are considered to be the fundamental factor for the studies of materials. However, the thermodynamic properties of nanomaterials are usually different form their partner bulk. Thus, it is very important to study the thermodynamics of nanomaterials. This present review focuses the status of research on the thermodynamics of nanomaterials including heat capacity, lattice parameters, binding energy, cohesive energy, melting enthalpy and other thermodynamic functions. In addition, the development trend in this field is prospected.

Contents
1 Introduction
2 Thermodynamic functions of nanomaterials
2.1 Heat capacity
2.2 Other thermodynamic functions
3 Lattice parameters, binding energy, cohesive energy of nanoparticles
4 Interfacial thermodynamics and thermal stability of nanocrystalline
5 Melting thermodynamics of nanoparticles
6 Phase diagram of nanoparticles (or phase transition)
7 Reaction thermodynamics of nanoparticles
7.1 Chemical reactions
7.2 Electrochemical reactions
7.3 Solution heat
7.4 Growth thermodynamics
8 Adsorption thermodynamics of nanoparticles
9 Perspectives

中图分类号: 

()
[1] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[2] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[3] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[4] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[5] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[6] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.
[7] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[8] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
[9] 丁朝, 杨维结, 霍开富, Leon Shaw. LiBH4储氢热力学和动力学调控[J]. 化学进展, 2021, 33(9): 1586-1597.
[10] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[11] 程熙萌, 张庆瑞. 功能蛋白纳米材料在环境保护中的应用[J]. 化学进展, 2021, 33(4): 678-688.
[12] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[13] 蒋乔, 徐雪卉, 丁宝全. 纳米材料对生物凝聚态的调控[J]. 化学进展, 2020, 32(8): 1128-1139.
[14] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.
[15] 刘阳, 张新波, 赵樱灿. 二维MoS2纳米材料及其复合物在水处理中的应用[J]. 化学进展, 2020, 32(5): 642-655.