English
新闻公告
More
化学进展 2010, Vol. 22 Issue (06): 1044-1057 前一篇   后一篇

所属专题: 锂离子电池

• 综述与评论 •

锂离子电池的电化学阻抗谱分析

庄全超1**; 徐守冬1; 邱祥云1; 崔永丽1; 方亮1; 孙世刚2**   

  1. (1. 中国矿业大学材料科学与工程学院 江苏 徐州221116; 2. 固体表面物理化学国家重点实验室,厦门大学化学化工学院化学系 福建 厦门 361005 )
  • 收稿日期:2009-07-27 修回日期:2009-09-04 出版日期:2010-06-24 发布日期:2010-05-05
  • 通讯作者: 庄全超 E-mail:zhuangquanchao@126.com
  • 基金资助:

    国家重点基础研究发展计划;中国矿业大学青年科技基金

Electrochemical Impedance Spectroscopy in Lithium ion Batteries Diagnosis

Zhuang Quanchao1**; Xu Shoudong1; Qiu Xiangyun1; Cui Yongli1; Fang Liang1; Sun Shigang2**   

  1. (1. School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116, China; 2. State Key Lab for Physical Chemistry of Solid Surfaces, Department of Chemistry, Xiamen University, Xiamen 361005 , China)
  • Received:2009-07-27 Revised:2009-09-04 Online:2010-06-24 Published:2010-05-05
  • Contact: Zhuang QuanChao E-mail:zhuangquanchao@126.com
  • Supported by:

    National Basic Research Program of China

电化学阻抗谱(EIS)是研究电极/电解质界面发生的电化学过程的最有力工具之一,广泛应用于研究锂离子在锂离子电池嵌合物电极活性材料中的嵌入脱出过程。本文从分析嵌合物电极的EIS谱特征入手,探讨了电化学阻抗谱中各时间常数的归属问题,重点讨论了锂离子在锂离子电池嵌合物电极活性材料嵌入脱出过程中相关动力学参数,如电荷传递电阻、活性材料的电子电阻、扩散以及锂离子扩散迁移通过固体电解质相界面膜(SEI膜)的电阻等对电极极化电位和温度的依赖关系。

Electrochemical impedance spectroscopy, or EIS, is one of the most powerful tools to analyze electrochemical processes occurring at electrode/electrolyte interfaces, and has been widely applied to the analysis of the insertion/desertion process of lithium ion in the intercalation electrode for lithium ion battery. In this paper, the ascription of each time constant of the EIS spectra is discussed, based on the analysis of the common EIS features of intercalation electrode. The kinetic parameters in the lithium ion insertion/desertion,dependent on temperature and electrode polarization, such as the charge transfer resistance, the electronic resistance of activated material, the resistance of SEI film that lithium ion transferring through, are also discussed based on the theoretical analysis.

Contents
1 Introduction
2 The common EIS features of intercalation electrode
3 The analysis of electrochemical impedance spectroscopy
3.1 The analysis of high-frequency arc
3.2 The analysis of medium to high-frequency arc
3.3 The analysis of medium -frequency arc
3.4 The analysis of low-frequency straight line
3.5 The analysis of the lowest-frequency domain
4 Conclusion

中图分类号: 

()
[1] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[2] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[3] 王许敏, 李书萍, 何仁杰, 余创, 谢佳, 程时杰. 准固相转化机制硫正极[J]. 化学进展, 2022, 34(4): 909-925.
[4] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[5] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[6] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[7] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[8] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[9] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[10] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[11] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[12] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[13] 汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 锂离子电池有机硅功能电解液[J]. 化学进展, 2020, 32(4): 467-480.
[14] 张伟, 齐小鹏, 方升, 张健华, 史碧梦, 杨娟玉. 碳在锂离子电池硅碳复合材料中的作用[J]. 化学进展, 2020, 32(4): 454-466.
[15] 陈豪登, 徐建兴, 籍少敏, 姬文晋, 崔立峰, 霍延平. MOFs衍生金属氧化物及其复合材料在锂离子电池负极材料中的应用[J]. 化学进展, 2020, 32(2/3): 298-308.
阅读次数
全文


摘要

锂离子电池的电化学阻抗谱分析