English
新闻公告
More
化学进展 2010, Vol. 22 Issue (05): 975-982 前一篇   后一篇

• 综述与评论 •

结构DNA纳米技术

蔡苗; 王强斌*   

  1. (中国科学院苏州纳米技术与纳米仿生研究所 纳米研究国际实验室 苏州 215125)
  • 收稿日期:2009-06-29 修回日期:2009-07-23 出版日期:2010-05-24 发布日期:2010-05-05
  • 通讯作者: 王强斌 E-mail:qbwang2008@sinano.ac.cn

Structural DNA Nanotechnology

Cai Miao; Wang Qiangbin*   

  1. (i-Laboratory, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, China)
  • Received:2009-06-29 Revised:2009-07-23 Online:2010-05-24 Published:2010-05-05
  • Contact: Wang Qiangbin E-mail:qbwang2008@sinano.ac.cn

DNA简单的配对原理A-T/C-G创造了丰富多彩的生物世界。DNA纳米技术将DNA从传统的基因图计划拓展成为建筑模块,用以构建功能纳米结构。本文综述了DNA自组装的原理,以及近年来结构DNA纳米技术研究中一些令人鼓舞的进展,其中包括构建二维和三维DNA纳米结构,以及DNA引导的多组分二维和三维纳米结构的最新成果,并对其研究前沿进行了展望。

The simple Watson-Crick base pairing rule of A-T/C-G of DNA has created a beautiful biological realm. DNA nanotechnology extends DNA’s conventional role from genetic blueprint to a building block in constructing functional nanoarchitectures. DNA self-assembly in building programmable nanopatterns has been attracting intense attention and holds great promise for building novel designed nanoarchitectures. In this review, we summarize the principle of DNA self-assembly, introduce some of the exciting progress of structural DNA nanotechnology in recent years, which include construction of DNA 2D patterns and 3D nanostructures, DNA-directed assembly of multicomponent 2D nanoarrays and 3D nanoarchitectures. At the end, we offer the outlook of the ever-growing frontiers of DNA nanotechnology.

Content
1 Introduction
2 Two dimensional DNA nanoarchitectures
3 Three dimensional DNA nanoarchitectures
4 DNA-templated two dimensional nanoarchitectures
5 DNA-templated three dimensional nanoarchitectures
6 Conclusion and outlook

中图分类号: 

()

[1 ] Seeman N C. J. Theor. Biol. ,1982,99: 237—247
[2 ] Fu T J,Seeman N C. Biochemistry,1993,32: 3211—3220
[3 ] Reishus D,Shaw B,Brun Y,et al. J. Am. Chem. Soc. ,
2005,127: 17590—17591
[4 ] Ke Y,Liu Y,Zhang J,et al. J. Am. Chem. Soc. ,2006,128:
4414—4421
[5 ] Mao C,Sun W,Seeman N C. J. Am. Chem. Soc. ,1999,
121: 5437—5443
[6 ] Yan H,Park S H,Ginkelstein G,et al. Science,2003,301:
1882—1884
[7 ] He Y,Tian Y,Chen Y,et al. Angew. Chem. Int. Ed. ,2005,
44: 6694—6696
[8 ] Deng Z X,Mao C D. Angew. Chem. Int. Ed. ,2004,43:
4068—4070
[9 ] Rothemund P W K. Nature,2006,440: 297—302
[10] Ke Y,Lindsay S,Chang Y,et al. Science,2008,319: 180—
183
[11] Chen J,Seeman N C. Nature,1991,350: 631—633
[12] Zhang Y,Seeman N C. J. Am. Chem. Soc. ,1994,116:
1661—1669
[13] Goodman R P,Schaap I A T,Tardin C F,et al. Science,2005,
310: 1661—1665
[14] Goodman R P,Berry R M,Turberfield A J. Chem. Commun. ,
2004,1372—1373
[15] Shih W M,Quispe J D,Joyce G F. Nature,2004,427: 618—
621
[16] He Y,Ye T,Su M,et al. Nature,2008,452: 198—202
[17] Zhang C,Su M,He Y,et al. Proc. Natl. Acad. Sci. USA,
2008,105: 10665—10669
[18] Aldaye F A,Sleiman H F. J. Am. Chem. Soc. ,2007,129:
13376—13377
[19] Aldaye F A,Lo P K,Karam P,et al. Nature Nanotech. ,2009,
4: 349—352
[20] Lin C,Liu Y,Yan H. Biochemistry,2009,48: 1663—1674
[21] Wang X,Zhuang J,Peng Q,et al. Nature,2005,437: 121—
124
[22] Deng Z X,Tian Y,Mao C D,et al. Angew. Chem. Int. Ed. ,
2005,44: 3582—3585
[23] Alivisatos A P,Johnsson K P,Peng X G,et al. Nature,1996,
382: 609—611
[24] Loweth C J,Caldwell W B,Peng X G,et al. Angew. Chem.
Inter. Ed. ,1999,38: 1808—1812
[25] Le J D,Pinto Y,Seeman N C,et al. Nano Lett. ,2004,4:
2343—2347
[26] Sharma J,Chhabra R,Liu Y,et al. Angew. Chem. Int. Ed. ,
2006,45: 730—735
[27] Sharma J,Ke Y,Lin C,et al. Angew. Chem. Int. Ed. ,2008,
47: 5157—5159
[28] Fu A,Micheel C M,Cha J,et al. J. Am. Chem. Soc. ,2004,
126: 10832—10833
[29] Aldaye F A,Sleiman H F. Angew. Chem. Int. Ed. ,2006,45:
2204—2209
[30] Park S H,Yin P,Liu Y,et al. Nano Lett. ,2005,5: 729—
733
[31] Liu Y,Lin C,Li H,et al. Angew. Chem. Int. Ed. ,2005,
44: 4333—4338
[32] Chhabra R,Sharma J,Ke Y,et al. J. Am. Chem. Soc. ,
2007,129: 10304—10305
[33] Rinker S,Ke Y,Liu Y,et al. Nature Nanotechnol. ,2008,3:
418—422
[34] Erben C M,Goodman R P,Turberfield A J. Angew. Chem.
Int. Ed. ,2006,45: 7414—7417
[35] Sharma J,Chhabra R,Cheng A,et al. Science,2009,323:
112—116
[36] Mastroianni A J,Claridge S A,Alivisatos A P. J. Am. Chem.
Soc. ,2009,131: 8455—8459

[1] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[2] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[3] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[4] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[5] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[6] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[7] 冀豪栋, 齐娟娟, 郑茂盛, 党晨原, 陈龙, 黄韬博, 刘文. 纳米技术在水中病毒灭活中的应用:对新型冠状病毒SARS-CoV-2传播阻断的启示[J]. 化学进展, 2022, 34(1): 207-226.
[8] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[9] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[10] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[11] 智康康, 杨鑫. 天然产物凝胶及其凝胶质[J]. 化学进展, 2019, 31(9): 1314-1328.
[12] 林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 多肽超分子手性自组装与应用[J]. 化学进展, 2019, 31(12): 1623-1636.
[13] 刘耀华, 刘育. 基于偶氮功能基的光控超分子组装[J]. 化学进展, 2019, 31(11): 1528-1539.
[14] 徐子悦, 张运昌, 林佳乐, 王辉, 张丹维, 黎占亭. 药物输送体系构筑中的超分子组装策略[J]. 化学进展, 2019, 31(11): 1540-1549.
[15] 郭家田, 卢玉超, 毕晨, 樊佳婷, 许国贺, 马晶军. 刺激响应型肽自组装及其应用[J]. 化学进展, 2019, 31(1): 83-93.
阅读次数
全文


摘要

结构DNA纳米技术