English
新闻公告
More
化学进展 2010, Vol. 22 Issue (05): 948-952 前一篇   后一篇

• 综述与评论 •

无机纳米复合水凝胶*

吕东; 杨琥**; 郭学锋; 程镕时   

  1. (南京大学化学化工学院 南京 210093)
  • 收稿日期:2009-07-16 修回日期:2009-09-02 出版日期:2010-05-24 发布日期:2010-05-05
  • 通讯作者: 杨琥 E-mail:yanghu@nju.edu.cn
  • 基金资助:

    高分子电解质材料在工程应用中的基础研究

Inorganic Nanocomposite Hydrogels

Lü Dong; Yang Hu**; Guo Xuefeng; Cheng Rongshi   

  1. (School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China)
  • Received:2009-07-16 Revised:2009-09-02 Online:2010-05-24 Published:2010-05-05
  • Contact: Yang Hu E-mail:yanghu@nju.edu.cn

近年来,纳米材料由于具有诸多奇特效应而备受关注。将无机纳米粒子与高分子水凝胶复合,可以很大程度地改善传统水凝胶的使用性能,因而成为近年来水凝胶研究领域的热点课题之一。纳米材料的形貌多姿多彩,相同材质不同形貌的纳米材料对复合材料性能有着不同的作用。本文从不同形貌(层状、管状及球状等)的无机纳米材料对复合水凝胶性能影响出发,以无机纳米粒子的形貌分类,综述了当前无机纳米复合水凝胶的研究进展。

Recently, inorganic nanocomposite hydrogels being their more excellent properties have been attracted considerable attention on the field of hydrogel researching due to the nano-fillers having many peculiar effects. Furthermore, the structural morphologies of the nanoparticles are various, such as lamellar-, tubal- and spherical-like, and different structural morphologies of nanopartilces should have different effects on the final properties of the composites. Up to now, various inorganic nanoparticles with different structural morphologies, have been already applied to prepare composite hydrogels, which showed distinct properties. In this paper, the research progress of inorganic nanocomposite hydrogels, based on various structural morphologies of nanoparticles, is reviewed.

Contents
1 Introduction
2 Nanocomposite hydrogels prepared by various inorganic nanoparticles with different structural morphologies
2.1 Lamellar- or layered-like nanocomposite hydrogels
2.2 Tubal-like nanocomposite hydrogels
2.3 Spherical-like nanocomposite hydrogels
3 Conclusion

中图分类号: 

()

[1 ] 顾雪蓉( Gu X R) ,朱育平( Zhu Y P ) . 凝胶化学( Gel
Chemistry) . 北京: 化学工业出版社( Beijing: Chemical
Industry Press) ,2004,120—249
[2 ] 陈莉( Chen L) . 智能高分子材料( Smart Polymer Materials) .
北京: 化学工业出版社( Beijing: Chemical Industry Press) ,
2004,43—76
[3 ] 刘莲英( Liu L Y) ,王勤(Wang Q) ,孙玉凤( Sun Y F) 等.
高分子通报( Chinese Polymer Bulletin) ,2007,2: 41—47
[4 ] Bajpai A K,Shukla S K,Bhanu S,et al. Prog. Polym. Sci. ,
2008,33 (11) : 1088—1118
[5 ] Gong J P,Katsuyama Y,Kurokawa T,et al. Adv. Mater. ,
2003,15 (14) : l155—l158
[6 ] Nakayama A,Kakugo A,Gong J P,et al. Adv. Funct. Mater. ,
2004,14 (11) : l124—l128
[7 ] Tanaka Y,Kuwabara R,Gong J P,et al. J. Phys. Chem. B,
2005,109: l1559—l1562
[8 ] Okumura Y,Ito K. Adv. Mater. ,2001,13 (7) : 485—487
[9 ] Huang T,Xu H G,Jiao K X,et al. Adv. Mater. ,2007,19
(12) : 1622—1626
[10] 张力德( Zhang L D) ,牟季美(Mou J M) . 纳米材料和纳米
结构( Nanomaterials and Nanostructures) . 北京:科学出版社
( Beijing: Science Press) ,2001,345—354
[11] 刘华蓉( Liu H R) ,葛学武(Ge X W) ,倪永红(Ni Y H) 等.
化学进展( Progress in Chemistry) ,2001,13 (5) : 403—409
[12] Haraguchi K,Takehisa T. Adv. Mater. ,2002,14: 1120—
1124
[13] Haraguchi K,Takehisa T,Fan S. Macromolecules,2002,35:
10162—10171
[14] Haraguchi K, Farnworth R, Ohbayashi A, et al.
Macromolecules,2003,36: 5732—5741
[15] Haraguchi K,Li H J,Matsuda K,et al. Macromolecules,2005,
38: 3482—3490
[16] 熊丽君(Xiong L J) ,胡小波(Hu X B) ,刘新星( Liu X X)
等. 化学进展( Progress in Chemistry) ,2008,20 ( 4 ) : 464—
469
[17] Zhu M F,Liu Y,Sun B,et al. Macromol. Rapid Commun. ,
2006,27: 1023—1028
[18] Liu Y,Zhu M F,Liu X L,et al. Polymer,2006,47: 1—5
[19] Zhang W,Liu Y,Zhu M F,et al. J. Polym. Sci. Part A:
Polym. Chem. ,2006,44: 6640—6645
[20] Liu Y,Zhu M F,Liu X L,et al. Macromol. Symp. ,2007,
254: 353—360
[21] Zhang W A,Luo W,Fang Y E. Mater. Lett. ,2005,59:
2876—2880
[22] Zheng J P,Li P,Ma Y L,et al. J. Appl. Polym. Sci. ,2002,
86: 1189—1194
[23] Li P,Zheng J P,Ma Y L,et al. J. Appl. Polym. Sci. ,2003,
88: 322—326
[24] Lee W F,Lee S C. J. Appl. Polym. Sci. ,2006,100: 500—
507
[25] Lee W F,Chen Y C. J. Appl. Polym. Sci. ,2005,98: 1572—
1580
[26] Lee W F, Tsao K T. J. Appl. Polym. Sci. ,2007,104:
2277—2287
[27] Mujumdar S K,Siegel R A. J. Polym. Sci. Part A: Polym.
Chem. ,2008,46: 6630—6640
[28] Hu X B,Xiong L J,Wang T, et al. Polymer,2009,50:
1933—1938
[29] Ma J H,Xu Y J,Zhang Q S,et al. Colloid Polym. Sci. ,2007,
285: 479—484
[30] Ma J H,Zhang L,Fan B,et al. J. Polym. Sci. Part B: Polym.
Phys. ,2008,46: 1546—1555
[31] Bignotti F,Sartore L,Penco M,et al. J. Appl. Polym. Sci. ,
2004,93: 1964—1971
[32] Xia X H,Yih J,D’Souza N A,et al. Polymer,2003,44:
3389—3393
[33] Xiong L J,Zhu M N,Hu X B,et al. Macromolecules,2009,
42: 3811—3817
[34] Iijima S. Nature,1991,354: 56—58
[35] Bhattacharyya S, Guillot S, Dabboue H, et al.
Biomacromolecules,2008,9: 505—509
[36] Tong X,Zheng J J,Lu Y C,et al. Mater. Lett. ,2007,61:
1704—1706
[37] 冯欢欢( Feng H H) ,汪辉亮(Wang H L) . 2007 年全国高分
子学术论文报告会论文摘要集( 2007′ National Academic
Thesis Meeting of Polymers) ,成都( Chengdu) . 2007,426
[38] Xiang Y Q,Peng Z Q,Chen D J. Eur. Polym. J. ,2006,42:
2125—2132
[39] Pan Y S,Xiong D S,Chen X L. J. Mater. Sci. ,2007,42:
5129—5134
[40] Pan Y S,Xiong D S,Gao F. J. Mater. Sci. : Mater. Med. ,
2008,19: 1963—1969
[41] Sarvestani A S,He X Z,Jabbari E. Mater. Lett. ,2007,61:
5278—5281
[42] Loos W,Verbrugghe S,Goethals E J,et al. Macromol. Chem.
Phys. ,2003,204: 98—103
[43] Loos W,Du Prez F. Macromol. Symp. ,2004,210: 483—491
[44] Hernández J C R,Pradas M M,Ribelles J L G. J. Non-Cryst.
Solids,2008,354: 1900—1908
[45] Jia X,Li Y F,Cheng Q,et al. Eur. Polym. J. ,2007,43:
1123—1131
[46] Liu Y Y,Liu T Y,Chen S Y,et al. J. Mater. Sci. Mater.
Med. ,2008,19: 2903—2911
[47] Hou Y P,Matthews A R,Smitherman A M,et al. Biomaterials,
2008,29: 3175—3184
[48] Eshel H,Dahan L,Dotan A,et al. Polym. Bull. ,2008,61:
257—265
[49] Kuang M,Wang D Y,Gao M Y,et al. Chem. Mater. ,2005,
17: 656—660
[50] Lee W F, Tsao K T. J. Appl. Polym. Sci. ,2006,100:
3653—3661
[51] Shen X Y,Tong H,Jiang T,et al. Compo. Sci. Tech. ,2007,
67: 2238—2245
[52] Zhu Y,Liu F P,Ding W P,et al. Angew. Chem. Int. Ed. ,
2006,45: 7211—7214
[53] Zhou X F,Zhang D Y,Zhu Y,et al. J. Phys. Chem. B,
2006,110: 25734—25739
[54] Yu D H,Qian J S,Xue N H,et al. Langmuir,2007,23:
382—386

[1] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[2] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[3] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[4] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[5] 唐森林, 高欢, 彭颖, 李明光, 陈润锋, 黄维. 钙钛矿光伏电池的非辐射复合损耗及调控策略[J]. 化学进展, 2022, 34(8): 1706-1722.
[6] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[7] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[8] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[9] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[10] 宫悦, 程一竹, 胡银春. 高分子导电水凝胶的制备及在柔性可穿戴电子设备中的应用[J]. 化学进展, 2022, 34(3): 616-629.
[11] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[12] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[13] 赵筱茜, 王聪, 田勇, 王秀芳. 微乳液法制备介孔碳材料[J]. 化学进展, 2022, 34(10): 2316-2328.
[14] 陈雅琼, 宋洪东, 吴懋, 陆扬, 管骁. 蛋白质-多糖复合体系在活性物质传递中的应用[J]. 化学进展, 2022, 34(10): 2267-2282.
[15] 祝梓琳, 范中贤, 缪梦昭, 黄怀义. 铱(Ⅲ)配合物乏氧肿瘤光动力治疗[J]. 化学进展, 2021, 33(9): 1473-1481.
阅读次数
全文


摘要

无机纳米复合水凝胶*