English
新闻公告
More
化学进展 2010, Vol. 22 Issue (05): 916-926 前一篇   后一篇

• 综述与评论 •

环糊精超分子水凝胶*

赵三平**; 徐卫林   

  1. (武汉科技学院 新型纺织材料绿色加工及其功能化教育部重点实验室 武汉430073)
  • 收稿日期:2009-06-15 修回日期:2009-10-08 出版日期:2010-05-24 发布日期:2010-05-05
  • 通讯作者: 赵三平 E-mail:zhaosanping@163.com
  • 基金资助:

    国家重点基础研究发展计划(973项目);湖北省自然科学基金青年杰出人才项目

Cyclodextrin-Containing Supramolecular Hydrogels

Zhao Sanping**; Xu Weilin   

  1. (Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan University of Science and Engineering, Wuhan 430073, China)
  • Received:2009-06-15 Revised:2009-10-08 Online:2010-05-24 Published:2010-05-05
  • Contact: Zhao Sanping E-mail:zhaosanping@163.com

本文综述了近年来基于环糊精包合作用的超分子水凝胶的研究进展,主要包括:环糊精与线性、星型、接枝、超支化聚合物包合形成的多聚(准)轮烷自组装制备超分子物理凝胶及功能化多聚(准)轮烷经交联反应制备超分子化学凝胶;环糊精、环糊精二聚体及其水溶性聚合物与带疏水性侧基的聚合物经“锁-钥匙”包合作用形成超分子物理凝胶;及其在药物、基因释放载体与组织工程支架中的应用。着重介绍了剪切、温度、pH值、光等刺激-响应性超分子水凝胶的设计与制备。

Recent progresses in studies on supramolecular hydrogels based on the inclusion complexation of cyclodextrins with various guest molecules are reviewed, mainly including: (1) the supramolecular physical hydrogels formed from the self-assembly of poly(pseudo)rotaxanes between cyclodectrins and different polymers such as linear, star-shaped, graft, or hyperbranched ones, and the supramolecular chemical hydrogels formed via the crosslinking reaction of functionalized poly(pseudo)rotaxanes; (2) the supramolecular physical hydrogels based on the formation of inclusion complexes via "lock and key" as physical crosslinking points between cyclodextrins, their dimers or water-soluble cyclodextrin-containing polymers and polymers with hydrophobic side groups and their potential applications as drug/gene delivery carriers and tissue engineering scaffolds. This review was focused on the design and preparation of the supramolecular hydrogels with stimuli-responsive properties including shear, temperature, pH, light, etc.

Contents
1 Introduction
2 Supramolecular hydrogels based on poly(pseudo)rotaxanes between CDs and polymers
2.1 Supramolecular physical hydrogels formed from the self-assembly of poly(pseudo)rotaxanes
2.2 Supramolecular chemical hydrogels formed via crosslinking reaction of poly(pseudo)rotaxanes
3 Supramolecular physical hydrogels based on inclusion complex formation of CD molecules with low molecular weight guest molecules via "lock and key" mechanism
3.1 Supramolecular hydrogels formed from inclusion complexation between CD or guest molecules and corresponding guest or CD moieties of polymers
3.2 Supramolecular hydrogels formed from inclusion complexation between CD moieties of polymers and guest moieties of polymers
3.3 Supramolecular hydrogels formed from inclusion complexation of host-guest units without polymeric backbone
4 Conlusion and outlook

中图分类号: 

()

[1 ] Szejtli J. Chem. Rev. ,1998,98(5) : 1743—1754
[2 ] Behr J P. The Lock-and-Key Principle. Chichester: John Wiley
and Sons,1994
[3 ] Szejtli J. Cycledextrins and Their Inclusion Complexes.
Budapest: Akademiai Kiado,1982
[4 ] Nepogodiev S A,Stoddart J F. Chem. Rev. ,1998,98 ( 5 ) :
1959—1976
[5 ] Mosher G L, Thompson D O. in: Encyclopedia of
Pharmaceutical Technology,2nd ed. ( Ed. Swarbrick J) . Marcel
Dekker,2002
[6 ] Connors K A. Chem. Rev. ,1997,97(5) : 1325—1358
[7 ] Li S,Purdy W C. Chem. Rev. ,1992,92(6) : 1457—1470
[8 ] Huang L,Tonelli A E. J. Macromol. Sci. Rev. Macromol.
Chem. Phys. ,1998,C38(4) :781—837
[9 ] Harada A,Li J, Kamachi M. Nature,1992,356 ( 6367 ) :
325—327
[10] Panova I G,Topchieva I N. Russ. Chem. Rev. ,2001,70(1) :
23—44
[11] Kawaguchi Y,Nishiyama T,Okada M,et al. Macromolecules,
2000,33(12) : 4472—4477
[12] Huang L,Allen E,Tonelli A E. Polymer,1998,39 ( 20 ) :
4857—4865
[13] Harada A,Okada M,Li J,et al. Macromolecules,1995,28
(24) : 8406—8409
[14] Lu J,Shinb I D,Nojimac S,et al. Polymer,2000,41 ( 15 ) :
5871—5883
[15] Fujita H, Ooya T, Kurisawa M, et al. Macromol. Rapid
Commun. ,1996,17(171) : 509—515
[16] Ikeda T,Watabe N,Ooya T,et al. Macromol. Chem. Phys. ,
2001,202(8) : 1338—1344
[17] Ooya T,Yui N. J. Control. Rel. ,1999,58(3) : 251—269
[18] Ooya T,Yui N. J. Control. Rel. ,2002,80(1 /3) : 219—228
[19] Li J,Yang C,Li H Z,et al. Adv. Mater. ,2006,18 ( 22 ) :
2969—2974
[20] Tokuhisa K,Hamada E,Karinaga R,et al. Macromolecules,
2006,39(26) : 9480—9485
[21] Li J,Harada A, Kamachi M. Polym. J. , 1994, 26 ( 9 ) :
1019—1026
[22] Li J,Loh X J. Adv. Drug Del. Rev. ,2008,60 ( 9 ) : 1000—
1017
[23] Li J,Ni X P,Leong K W. J. Biomed. Mater. Res. Part A,
2003,65A(2) : 196—202
[24] Li J,Li X,Ni X P, et al. Key Eng. Mater. ,2005,288:
117—120
[25] Kataoka T,Kidowaki M,Zhao C,et al. J. Phys. Chem. B,
2006,110(48) : 24377—24383
[26] Choi H S,Ooya T,Sasaki S,et al. ChemPhysChem,2004,5
(9) : 1431—1434
[27] Li J,Li X,Zhou Z,et al. Macromolecules,2001,34 ( 21 ) :
7236—7237
[28] Ni X,Cheng A,Li J. J. Biomed. Mater. Res. Part A,2009,88A(4) : 1031—1036
[29] Li J,Li X,Ni X P, et al. Biomaterials, 2006, 27 ( 22 ) :
4132—4140
[30] Wu D Q,Wang T,Lu B,et al. Langmuir,2008,24 ( 18 ) :
10306—10312
[31] Zhao S P,Zhang L M,Ma D. J. Phys. Chem. B,2006,110
(25) : 12225—12229
[32] Zhao S P,Lee J H. Macromol. Res. ,2009,17(3) : 156—162
[33] Li X,Li J. J. Biomed. Mater. Res. Part A,2008,86A( 4 ) :
1055—1061
[34] Guo M,Jiang M,Pispas S,et al. Macromolecules,2008,41
(24) : 9744—9749
[35] Yuan R,Shuai X. J. Polym. Sci. Part B: Polym. Phys. ,
2008,46(3) : 782—790
[36] Sabadini E,Cosgrove T. Langmuir,2003,19 ( 23 ) : 9680—
9683
[37] Huh K M,Ooya T,Yui N,et al. Macromolecules,2001,34
(25) : 8657—8662
[38] Choi H S,Kontani K,Yui N,et al. Macromol. Biosci. ,2002,
2(6) : 298—303
[39] Huh K M,Cho Y W,Yui N,et al. Macromol. Biosci. ,2004,
4(1) : 92—99
[40] Nakama T,Ooya T,Yui N. Polym. J. ,2004,36 ( 4 ) : 338—
344
[41] Choi H S,Yamamoto K,Ooya T,et al. ChemPhysChem,2005,
6(6) : 1081—1086
[42] 赵三平( Zhao S P) ,曹孟杰( Cao M J) ,徐卫林(Xu W L) . 高
等学校化学学报( Chem. J. Chinese U. ) ,2008,29 ( 9 ) :
1914—1916
[43] Zhao S P,Lee J H,Xu W L. Carbohydrate Research,2009,
344(16) : 2201—2208
[44] He L,Huang J,Chen Y,et al. Macromolecules,2005,38(9) :
3845—3851
[45] Sabadini E,Cosgrove T,Taweepreda W. Langmuir,2003,19
(11) : 4812—4816
[46] Wang Z,Chen Y. Macromolecules,2007,40(9) : 3402—3407
[47] Ma D,Zhang L M. J. Phys. Chem. B,2008,112 ( 20 ) :
6315—6321
[48] Ma D,Xi X,Zhang L M. J. Polym. Sci. Part B: Polym.
Phys. ,2009,47(7) : 740—749
[49] Jing B,Chen X,Wang X,et al. ChemPhysChem,2008,9
(2) : 249—252
[50] Ichi T,Watanabe J,Ooya T,et al. Biomacromolecules,2001,
2(1) : 204—210
[51] Ichi T,Ooya T,Yui N. Macromol. Biosci. ,2003,3 ( 7 ) :
373—380
[52] Watanabe J,Ooya T,Nitta K H,et al. Biomaterials,2002,23
(20) : 4041—4048
[53] Lee W K,Ichi T,Ooya T,et al. J. Biomed. Mat. Res. Part
A,2003,67A(4) : 1087—1092
[54] Ooya T,Akutsu M,Kumashiro Y,et al. Sci. Technol. Adv.
Mater. ,2005,6(3 /4) : 447—451
[55] 赵三平( Zhao S P) ,冯增国( Feng Z G) ,朴东旭( Piao D X) .
高等学校化学学报( Chem. J. Chinese U. ) ,2003,24 ( 1 ) :
186—188
[56] Feng Z G,Zhao S P. Polymer,2003,44(18) : 5177—5186
[57] Wei H,He J,Feng Z G,et al. Eur. Polym. J. ,2005,41(5) :
948—957
[58] Wei H,Zhang A,Feng Z G,et al. J. Polym. Sci. Part A:
Polym. Chem. ,2005,43(13) : 2941—2949
[59] Wei H,Yu H,Feng Z,et al. Macromolecules,2005,38(21) :
8833—8839
[60] Zhao S P,Zhang L M,Ma D,et al. J. Phys. Chem. B,2006,
110(33) : 16503—16507
[61] Aamer K A, Sardinha H,Bhatia S R, et al. Biomaterials,
2004,25(6) : 1087—1093
[62] Hutmacher D W. J. Biomater. Sci. Polym. Ed. ,2001,12
(1) : 107—124
[63] Tomatsu I, Hashidzume A, Harada A. Macromol. Rapid
Commun. ,2005,26(10) : 825—829
[64] Tomatsu I,Hashidzume A,Harada A. Macromolecules,2005,
38(12) : 5223—5227
[65] Tomatsu I, Hashidzume A, Harada A. Macromol. Rapid
Commun. ,2006,27(4) : 236—241
[66] Ogoshi T,Takashima Y,Harada A,et al. J. Am. Chem. Soc. ,
2007,129(15) : 4878—4879
[67] Choi H S,Ooya T,Huh K M, Yui N. Biomacromolecules,
2005,6(3) : 1200—1204
[68] Zhao Y L,Stoddart J F. Langmuir,2009,25 ( 15 ) : 8442—
8446
[69] Weickenmeier M, Wenz G, Huff J. Macromol. Rapid
Commun. ,1997,18(12) : 1117—1123
[70] Auzely-Velty R,Rinaudo M. Macromolecules,2002,35 ( 21 ) :
7955—7962
[71] Takashima Y,Nakayama T,Harada A,et al. Chem. Lett. ,
2004,33(7) : 890—891
[72] Tomatsu I,Hashidzume A,Harada A. J. Am. Chem. Soc. ,
2006,128(7) : 2226—2227
[73] Kretschmann O,Choi S W,Ritter H,et al. Angew. Chem. Int.
Ed. ,2006,45(26) : 4361—4365
[74] Gref R,Amiel C,Molinard K,et al. J. Control. Rel. ,2006,
111(3) : 316—324
[75] Daoud-Mahammed S,Grossiord J L,Gref R,et al. J. Biomed.
Mater. Res. Part A,2008,86A(3) : 736—748
[76] Mannaker F,Vermonden T,Hennink W E,et al. Langmuir,
2008,24(21) : 12559—12567
[77] Mannaker F,Pot M,Hennink W E,et al. Macromolecules,
2008,41(5) : 1766—1773
[78] Koppmans C, Ritter H. Macromolecules, 2008, 41 ( 20 ) :
7418—7422
[79] Deng W,Yamaguchi H,Harada A, et al. Angew. Chem. ,
2007,119(27) : 5236—5239
[80] Deng W,Yamaguchi H,Harada A,et al. Chem. Asian J. ,
2008,3(4) : 687—695

[1] 李霞, 马红艳, 聂晓娟, 刘旭, 卞成明, 谢龙. 星形环糊精聚合物的制备及其应用[J]. 化学进展, 2020, 32(7): 935-942.
[2] 马明放, 栾天翔, 邢鹏遥, 李兆楼, 初晓晓, 郝爱友. 基于β-环糊精的有机小分子凝胶[J]. 化学进展, 2019, 31(2/3): 225-235.
[3] 赵倩, 李盛华, 刘育*. 环糊精超分子凝胶的构筑及其功能[J]. 化学进展, 2018, 30(5): 673-683.
[4] 沈海民, 武宏科, 史鸿鑫, 纪红兵, 余武斌. 非均相环糊精在水相有机合成反应中的应用[J]. 化学进展, 2015, 27(1): 70-78.
[5] 廖荣强, 刘满朔, 廖霞俐, 杨波. 基于环糊精的智能刺激响应型药物载体[J]. 化学进展, 2015, 27(1): 79-90.
[6] 韩彬, 廖霞俐, 杨波. 基于环糊精的靶向药物传递系统[J]. 化学进展, 2014, 26(06): 1039-1049.
[7] 徐妮为, 刘梦艳, 洪诗斌, 颜蔚, 付继芳, 邓维. 基于环糊精构建的基因载体进展[J]. 化学进展, 2014, 26(0203): 375-384.
[8] 彭了, 冯岸超, 王宏, 张慧娟, 袁金颖. 基于β-环糊精和二茂铁的电压刺激响应体系[J]. 化学进展, 2013, 25(11): 1942-1950.
[9] 白阳, 范晓东*, 穆承广, 杨臻, 王丹, 张海涛. 含环糊精链节的拓扑高分子[J]. 化学进展, 2013, 25(0203): 363-369.
[10] 谢锐, 杨眉, 程昌敬, 姜晶, 褚良银. 分子识别与温度响应复合智能材料[J]. 化学进展, 2012, 24(0203): 195-202.
[11] 辛飞飞, 张华承, 孙涛, 孔丽, 李月明, 郝爱友. 基于超分子环糊精两亲分子的敏感型囊泡体系[J]. 化学进展, 2012, 24(0203): 414-422.
[12] 孙涛, 李月明, 辛飞飞, 李尚洋, 侯月会, 郝爱友. 基于环糊精和偶氮化合物的光控可逆超分子体系[J]. 化学进展, 2012, 24(01): 70-79.
[13] 张林, 李琳玲, 程丽华, 陈欢林. 环糊精分子管道的制备与应用研究进展[J]. 化学进展, 2011, 23(9): 1936-1944.
[14] 董海青, 李永勇, 李兰, 时东陆. 生物医用类环糊精/聚合物(准)聚轮烷[J]. 化学进展, 2011, 23(5): 914-922.
[15] 张华承, 辛飞飞, 李月明, 郝爱友, 安伟, 孙涛. 超分子环糊精两亲分子[J]. 化学进展, 2010, 22(12): 2276-2281.
阅读次数
全文


摘要

环糊精超分子水凝胶*