English
新闻公告
More
化学进展 2010, Vol. 22 Issue (05): 867-876 前一篇   后一篇

• 综述与评论 •

TiO2与碳纳米管的复合及光催化协同作用*

黄浪欢**; 王后锦; 刘应亮; 焦自斌; 邵子倍   

  1. (暨南大学化学系纳米化学研究所  广州  510632)
  • 收稿日期:2009-07-20 修回日期:2009-09-22 出版日期:2010-05-24 发布日期:2010-05-05
  • 通讯作者: 黄浪欢 E-mail:thuanglh@jnu.edu.cn
  • 基金资助:

    长余辉发光材料与TiO2纳米管的纳米复合及其性能;TiO2纳米管与长余辉发光材料的复合构造及性能研究

TiO2/Carbon Nanotube Composites and Their Synergistic Effects on Enhancing the Photocatalysis Efficiency

Huang Langhuan**; Wang Houjin; Liu Yingliang; Jiao Zibing; Shao Zibei   

  1. (Department of Chemistry, Institute of Nanochemistry, Jinan University, Guangzhou 510632, China)
  • Received:2009-07-20 Revised:2009-09-22 Online:2010-05-24 Published:2010-05-05
  • Contact: Huang Langhuan E-mail:thuanglh@jnu.edu.cn

TiO2与碳纳米管均是近15年来最受关注的功能材料。将TiO2与碳纳米管复合构建的TiO2/碳纳米管兼有两种材料的特点及优点,在许多领域得到广泛研究。本文基于国内外最新研究进展,系统综述了近年来逐步建立起来的制备TiO2/碳纳米管的方法,着重介绍了混合法、化学气相沉积法、静电纺丝法、溶胶-凝胶法、水热溶剂热法等几种比较主要的方法。并且以TiO2 /碳纳米管在光催化领域的应用研究为侧重点,详细分析了碳纳米管在促进TiO2光生电子-空穴分离、增强可见光吸收等方面的协同作用。文章最后指出相关研究中有待解决的问题,并对此类材料的发展趋势做了展望。

Titannium dioxide (TiO2) and carbon nanotubes (CNTs) are the most investigated functional materials over the past 15 years. TiO2/CNTs nanocomposites, which combine the intrinsic properties and advantages of two materials, have been widely studied in diverse fields. In this paper, the recent progress in synthesis study of TiO2/CNTs are systematically reviewed based on the latest literatures. Some important synthesis methods such as mixing, chemical vapour deposition, electrospinning, sol-gel, hydrothermal and solvothermal are summarized. The synergistic effects such as enhancing the separation of photo-generated electron/hole pairs, increasing the visible light photocatalytic activity and the specific surface area are discussed. The problems that still should be resolved and the further perspectives are pointed out.

Contents
1 Introduction
2 Synthesis methods of TiO2/CNTs composites
2.1 Mixing method
2.2 Chemical vapour deposition method
2.3 Electrospinning method
2.4 Liquid phase deposition method
2.5 Sol-gel method
2.6 Hydrothermal and solvothermal method
2.7 Self-assembly method
2.8 Other methods
2.9 Modifer and their application in synthesis of TiO2/CNTs
3 Photocatalysis synergistic effects of TiO2/CNTs
3.1 Enhancing the separation of photo-generated electron/hole pairs
3.2 Enhancing the visible light photocatalytic activity
3.3 Increasing the specific surface area
3.4 Increasing the hydroxyl radical content
4 Conclusion and prospects

中图分类号: 

()

[1 ] Huang L H,Sun C,Liu Y L. Appl. Surf. Sci. ,2007,253
(17) : 7029—7035
[2 ] Huang L H,Sun Z X,Liu Y L. J. Ceram. Soc. Jpn. ,2007,
115(1337) : 28—31
[3 ] Mi Y Z,Liu Y L,Yuan D S,et al. J. Mater. Sci. ,2005,40(14) : 3635—3638
[4 ] Xiao Y,Liu Y L,Yuan D S. Carbon,2008,46(3) : 559—561
[5 ] Zheng M T,Liu Y L,Xiao Y,et al. J. Phys. Chem. C,2009,
113(19) : 8455—8459
[6 ] Shi J W,Zheng J T,Wu P,et al. Catal. Commun. ,2008,9
(9) : 1846—1850
[7 ] Wang X J,Hu Z H,Chen Y J,et al. Appl. Surf. Sci. ,2009,
255(7) : 3953—3958
[8 ] Xu D P,Huang Z H,Kang F,et al. Catal. Today,2008,139
(1 /2) : 64—68
[9 ] Kim S,Lim S K. Appl. Catal. B,2008,84(1 /2) : 16—20
[10] Dechakiatkrai C,Chen J,Lynam C,et al. J. Electrochem.
Soc. ,2007,154(5) : A407—A411
[11] Woan K,Pyrgiotakis G,Sigmund W. Adv. Mater. ,2009,21
(21) : 2233—2239
[12] Zhu Z P,Zhou Y,Yu H W,et al. Chem. Lett. ,2006,35
(8) : 890—891
[13] Sawatsuk T,Chindaduang A,Sae-Kung C,et al. Diam. Relat.
Mater. ,2009,18(2 /3) : 524—527
[14] Yen C Y,Lin Y F,Liao S H,et al. Nanotechnology,2008,19
(37) : art. no. 375305
[15] Kim S L,Jang S R,Vittal R,et al. J. Appl. Electrochem. ,
2006,36(12) : 1433—1439
[16] Lee K M,Hu C W,Chen H W,et al. Sol. Energ. Mat. Sol.
C. ,2008,92(12) : 1628—1633
[17] Lee W,Lee J,Min S K,et al. Mater. Sci. Eng. B,2009,156
(1 /3) : 48—51
[18] Yan J Y,Song H H,Yang S B,et al. Electrochim. Acta,
2008,53(22) : 6351—6355
[19] Moriguchi I,Hidaka R,Yamada H,et al. Adv. Mater. ,2006,
18(1) : 69—73
[20] Moriguchi I,Shono Y,Yamada H,Kudo T. J. Phys. Chem. B,
2008,112 (46) : 14560—14565
[21] Yoon S,Ka B H,Lee C,et al. Electrochem. Solid-State Lett. ,
2009,12(2) : A28—A32
[22] Huang H C,Huang G L,Chen H L,et al. Thin Solid Films,
2006,511: 203—207
[23] Espinosa E H,Ionescu R,Chambon B,et al. Sensor Actuat. B,
2007,127(1) : 137—142
[24] Ueda T, Takahashi K, Mitsugi F, et al. Diamond Relat.
Mater. ,2009,18(2 /3) : 493—496
[25] Jiang L C,Zhang W D. Electroanal. ,2009,21(8) : 988—993
[26] Guirado-Lopez R A,Sanchez M,Rincon M E. J. Phys. Chem.
C,2007,111(1) : 57—65
[27] Mishra A,Banerjee S,Mohapatra S K,et al. Nanotechnology,
2008,19(44) : art. no. 445607
[28] Zhang L,Tian D B,Zhu J J. Bioelectrochemistry,2008,74
(1) : 157—163
[29] Li X H,Niu J L,Zhang J,et al. J. Phys. Chem. B,2003,
107(11) : 2453—2458
[30] Ahmmad B, Kusumoto Y, Somekawa S, et al. Catal.
Commun. ,2008,9 (6) : 1410—1413
[31] Yu Y,Yu J C,Chan C Y,et al. Appl. Catal. B,2005,61(1 /
2) : 1—11
[32] Kuo C Y. J. Hazard. Mater. ,2009,163(1) : 239—244
[33] Yao Y,Li G H,Ciston S,et al. Environ. Sci. Technol. ,2008,
42(13) : 4952—4957
[34] Yao Y,Li G H,Gray K A,et al. Langmuir,2008,24 (14 ) :
7072—7075
[35] Yu H T,Quan X,Chen S,et al. J. Photoch. Photobio. A,
2008,200(2 /3) : 301—306
[36] 于洪涛(Yu H T) ,全燮( Quan X) . 化学进展( Progress in
Chemistry) ,2009,21(2 /3) : 406—419
[37] Yu H T,Quan X,Chen S,Zhao H M. J. Phys. Chem. C,
2007,111 (35) : 12987—12991
[38] Wang H,Quan X,Yu H T,et al. Carbon,2008,46 ( 8 ) :
1126—1132
[39] Orlanducci S,Sessa V,Terranova M L,et al. Carbon,2006,44
(13) : 2839—2843
[40] Wang G J,Lee M W,Chen Y H. Photochem. Photobiol. ,
2008,84(6) : 1493—1499
[41] Kuo C S,Tseng Y H,Lin H Y,et al. Nanotechnology,2007,
18(46) : art. no. 465607
[42] Kedem S,Schmidt J,Paz Y,et al. Langmuir,2005,21 (12) :
5600—5604
[43] Aryal S,Kim C K,Kim K W,et al. Mater. Sci. Eng. C,
2008,28 (1) : 75—79
[44] Hu G J,Meng X F,Feng X Y,et al. J. Mater. Sci. ,2007,42
(17) : 7162—7170
[45] Liu B,Zeng H C. Chem. Mater. ,2008,20 (8) : 2711—2718
[46] Vincent P,Brioude A,Journet C,et al. J. Non-Cryst. Solids,
2002,311(2) : 130—137
[47] Jitianu A,Cacciaguerra T,Benoit R,et al. Carbon,2004,42
(5 /6) : 1147—1151
[48] Jitianu A,Cacciaguerra T,Berger M H,et al. J. Non-Cryst.
Solids,2004,345: 596—600
[49] Wang H,Wang H L,Jiang W F,et al. Water Res. ,2009,43
(1) : 204—210
[50] Chen L,Zhang B L,Qu M Z,et al. Powder Technol. ,2005,
154(1) : 70—72
[51] Gomathi A,Vivekchand S R C,Govindaraj A,et al. Adv.
Mater. ,2005,17(22) : 2757—2761
[52] Yan X B,Tay B K,Yang,Y. J. Phys. Chem. B,2006,110
(51) : 25844—25849
[53] Wang S,Ji L J,Wu B,et al. Appl. Surf. Sci. ,2008,255
(5) : 3263—3266
[54] Wang S,Gong Q M,Liang J. Ultrason. Sonochem. ,2009,16
(2) : 205—208
[55] Xia X H,Jia Z H,Yu Y,et al. Carbon,2007,45(4) : 717—
721
[56] An G M,Ma W H,Sun Z Y,et al. Carbon,2007,45 ( 9 ) :
1795—1801
[57] Kim T H,Lim D Y,Yu B S,et al. Ind. Eng. Chem. Res. ,
2000,39(12) : 4702—4706[58] Wang Q,Yang D,Chen D M,et al. J. Nanopart. Res. ,2007,
9: 1087—1096
[59] Dai K,Peng T Y,Ke D N,et al. Nanotechnology,2009,20
(12) : art. no. 125603
[60] Tan X L,Fang M,Wang X K. J. Nanosci. Nanotechnol. ,
2008,8(11) : 5624—5631
[61] Xu Z Z, Long Y Z, Kang S Z, et al. J. Disperion Sci.
Technol. ,2008,29(8) : 1150—1152
[62] Kang S Z, Cui Z Y, Min J. Fullerenes Nanotubes Carbon
Nanosrtruct. ,2007,15(2) : 81—88
[63] Shin H S,Jang Y S,Lee Y,et al. Adv. Mater. ,2007,19:
2873—2876
[64] Li J,Tang S B,Lu L,et al. J. Am. Chem. Soc. ,2007,129
(30) : 9401—9409
[65] Cho J,Schaab S,Roether J A,et al. J. Nanopart. Res. ,2008,
10: 99—105
[66] Yang Y D,Qu L T,Dai L M,et al. Adv. Mater. ,2007,19
(9) : 1239—1243
[67] Fan W G,Gao L,Sun J. J. Am. Ceram. Soc. ,2006,89(2) :
731—733
[68] Lee S W,Cho J M,Sigmund W M. Chem. Commun. ,2003,
6: 780—781
[69] Eder D,Windle A H. Adv. Mater. ,2008,20 ( 9 ) : 1787—
1793
[70] Eder D,Windle A H. J. Mater. Chem. ,2008,18 ( 17 ) :
2036—2043
[71] Eder D,Kinloch I A,Windle A H. Chem. Commun. ,2006,
13: 1448—1450
[72] Sun J,Iwasa M,Gao L,et al. Carbon,2004,42 ( 4 ) : 895—
899
[73] Gao B,Peng C A,Chen G Z,et al. Appl. Catal. B,2008,85
(1 /2) : 17—23
[74] Ji L J,Wang Z,Li Z,et al. Mater. Lett. ,2008,62(12 /13) :
1979—1982
[75] Lee S W,Sigmund W M. Chem. Commun. ,2003,6: 780—
781
[76] Jitianu A,Cacciaguerra T,Berger M H,et al. J. Non-Cryst.
Solids,2004,34: 596—600
[77] Pender M J,Sowards L A,Hartgerink J D,et al. Nano Lett. ,
2006,6(1) : 40—44
[78] Lu X,Imae T. J. Phys. Chem. C,2007,111 ( 24 ) : 8459—
8462
[79] Kongkanand A,Dominguez R M,Kamat P V. Nano Lett. ,
2007,7(3) : 676—680
[80] Kongkanand A,Kamat P V. ACS Nano,2006,1(1) : 13—21
[81] 张维( Zhang W) ,崔晓莉( Cui X L) ,江志裕( Jiang Z Y)
等. 化学学报(Acta Chimica Sinica) ,2008,66(8) : 867—873
[82] 万中全(Wan Z Q) ,郑树楠( Zheng S N) ,贾春阳( Jia C Y)
等. 化学学报(Acta Chimica Sinica) ,2009,67(5) : 403—408
[83] Zhang L D,Mo C M. Nanostruct. Mater. ,1995,6 ( 5 /8 ) :
831—834
[84] Yen C Y,Lin Y F,Hung C H,et al. Nanotechnology,2008,
19(4) : art. no. 045604
[85] Wang W D,Serp P,Kalck P,et al. Mater. Res. Bull. ,2008,
43 (4) : 958—967
[86] Wang W D,Serp P,Kalck P,et al. J. Mol. Catal. A,2005,
235(1 /2) : 194—199
[87] Wang W D,Serp P,Kalck P,et al. Appl. Catal. ,B,2005,
56(4) : 305—312
[88] Ou Y,Lin J D,Fang S M,et al. Chem. Phys. Lett. ,2006,
429(1 /3) : 199—203
[89] Chen L C,Ho Y C,Guo W S,et al. Electrochem. Acta,2009,
54(15) : 3884—3891
[90] Yu Y,Yu J C,Yu J G,et al. Appl. Catal. A,2005,289(2) :
186—196
[91] 柳丽芬( Liu L F) ,郑国华( Zheng G H) ,杨凤林( Yang F L)
等. 中国环境科学( China Environmental Science) ,2009,29
(2) : 213—218

[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[3] 王龙, 周庆萍, 吴钊峰, 张延铭, 叶小我, 陈长鑫. 基于碳纳米管的光伏电池[J]. 化学进展, 2023, 35(3): 421-432.
[4] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[5] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[6] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[7] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[8] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[9] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[10] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[11] 唐晨柳, 邹云杰, 徐明楷, 凌岚. 金属铁络合物光催化二氧化碳还原[J]. 化学进展, 2022, 34(1): 142-154.
[12] 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664.
[13] 赵依凡, 毛琦云, 翟晓雅, 张国英. 钼酸铋光催化剂的结构缺陷调控[J]. 化学进展, 2021, 33(8): 1331-1343.
[14] 陈肖萍, 陈巧珊, 毕进红. 光催化降解土壤中多环芳烃[J]. 化学进展, 2021, 33(8): 1323-1330.
[15] 郭俊兰, 梁英华, 王欢, 刘利, 崔文权. 光催化制氢的助催化剂[J]. 化学进展, 2021, 33(7): 1100-1114.