English
新闻公告
More
化学进展 2010, Vol. 22 Issue (05): 861-866 前一篇   后一篇

• 综述与评论 •

掺杂ZnS纳米粒子的制备及应用

李娟娟; 徐光明*   

  1. (浙江大学化学系微分析系统研究所 杭州310058)
  • 收稿日期:2009-07-13 修回日期:2009-09-23 出版日期:2010-05-24 发布日期:2010-05-05
  • 通讯作者: 徐光明 E-mail:xugmhz@mail.hz.zj.cn

Preparation and Applications of Doped ZnS Nanoparticles

Li Juanjuan; Xu Guangming*   

  1. (Department of Chemistry, Institute of Microanalytical Systems, Zhejiang University, Hangzhou 310058,China)
  • Received:2009-07-13 Revised:2009-09-23 Online:2010-05-24 Published:2010-05-05
  • Contact: Xu Guangming E-mail:xugmhz@mail.hz.zj.cn

近年来,掺杂ZnS半导体纳米材料作为一类新型发光材料,因其独特的光学特性和在众多领域中的广阔应用前景而成为研究的热点。由于量子尺寸效应,随着纳米粒子粒径减小,掺杂ZnS纳米粒子量子产率增加、带隙能增大,导致吸收光谱和荧光激发光谱发生蓝移,而荧光发射光谱红移。本文详细讨论了影响掺杂ZnS纳米粒子发光性能和量子产率的因素,并综述了掺杂ZnS纳米材料制备及其应用的研究进展。

Doped ZnS seconductor nanocrystals as a new class of luminescent materials have become a research hotspot for their unique optical characteristics and great application prospects in various areas. As the particle size becoming smaller, the quantum efficiency of doped ZnS nanocrystals increases, and the band gap energy increases too, which results in a blue-shift in the absorption spectra and photoluminescent excitation spectra, while a red-shift in the photoluminescent emission spectrum due to quantum size effects. In this paper, the factors influencing the luminescence properties and luminescence quantum efficiency of doped ZnS nanoparticles are discussed, and recent developments of preparation and applications of doped ZnS semiconductor nanoparticle materials are reviewed.

Contents
1 Introduction
2 Preparation of doped ZnS semiconductor nanoparticle materials
3 The factors influencing the luminescence properties and quantum efficiency of doped ZnS nanoparticles
3.1 Dopant ions and their concentration
3.2 Surface modification
3.3 UV irradiation
4 The applications of doped ZnS semiconductor nanoparticle materials
4.1 The application in photoelectronic field
4.2 The application in environmental analysis and biomedical fields
4.3 The application as photocatalyst
4.4 The application in nanocomposite materials
5 Prospects

中图分类号: 

()

[1 ] Bhargava R N,Gallagher D. Phys. Rev. Lett. ,1994,72(3 ) :
416—419
[2 ] Yang P,Lv M,Xu D,et al. Appl. Phys. A,2002,74 ( 2 ) :
257—259
[3 ] Yang P,Lv M K,Xu D,et al. Opt. Mater. ,2003,24 ( 3 ) :
497—502
[4 ] Yang P,Lv M,Xu D,et al. Appl. Phys. A,2001,73 (4 ) :
455—458
[5 ] Yang P,Lv M K,Xu D,et al. Chem. Phys. Lett. ,2001,336
(1 /2) : 76—80
[6 ] Yang P,Lv M K,Xu D,et al. J. Lumin. ,2001,93 ( 2 ) :
101—105
[7 ] Song H Y,Leem Y M,Kim B G,et al. J. Phys. Chem. Solids,
2008,69(1) : 153—160
[8 ] Jian W P,Zhuang J Q,Zhang D W,et al. Mater. Chem.
Phys. ,2006,99(2 /3) : 494—497
[9 ] Manoharan S S,Goyal S,Rao M L,et al. Mater. Res. Bull. ,
2001,36(5 /6) : 1039—1047
[10] Yang H M,Huang C H,Su X H,et al. J. Alloys Compd. ,
2005,402(1 /2) : 274—277
[11] Jian W P,Zhuang J Q,Yang W S,et al. J. Lumin. ,2007,
126(2) : 735—740
[12] Gan L M,Liu B,Chew C H,et al. Langmuir,1997,13(24) :
6427—6431
[13] Xia B,Lenggoro I W,Okuyama K. Chem. Mater. ,2002,14
(12) : 4969—4974
[14] Korotchenkov O A, Cantarero A, Shpak A P, et al.
Nanotechnology,2005,16(10) : 2033—2038
[15] Ehlert O,Osvet A,Batentschuk M,et al. J. Phys. Chem. B,
2006,110 (46) : 23175—23178
[16] Ehlert O,Bücking W,Riegler J,et al. Microchim. Acta,2008,
160(3) : 351—356
[17] Kubo T,Isobe T,Senna M. J. Lumin. ,2002,99(1) : 39—45
[18] Sfihi H,Takahashi H,Sato W,et al. J. Alloys Compd. ,2006,
424(1 /2) : 187—192
[19] Huang F H,Peng Y R,Lin C F. Chem. Res. Chinese U. ,
2006,22(6) : 675—678
[20] Murase N, Jagannathan R, Kanematsu Y, et al. J. Phys.
Chem. B,1999,103(5) : 754—760
[21] Sang W B,Qian Y B,Min J H,et al. Solid State Commun. ,
2002,121(9 /10) : 475—478
[22] Yu X B,Mao L H,Fan Z,et al. Mater. Lett. ,2004,58(29) :
3661—3664
[23] Son D,Jung D R,Kim J,et al. Appl. Phys. Lett. ,2007,90
(10) : art. no. 101910
[24] Ishizumi A,White C W,Kanemitsu Y. Appl. Phys. Lett. ,
2004,84(13) : 2397—2399
[25] Singh A,Limaye M,Singh S,et al. Nanotechnology,2008,19
(24) : art. no. 245613
[26] Dong D Q,Li L,Zhang X S,et al. Chin. Phys. Lett. ,2007,
24(9) : 2661—2663
[27] Borse P H,Vogel W,Kulkarni S K. J. Colloid Interface Sci. ,
2006,293(2) : 437—442
[28] Su F H,Fang Z L,Ma B S,et al. J. Phys. Chem. B,2003,
107(29) : 6991—6996
[29] Zhuang J Q,Zhang X D,Wang G,et al. J. Mater. Chem. ,
2003,13(7) : 1853—1857
[30] Hu H,Zhang W H. Opt. Mater. ,2006,28(5) : 536—550
[31] Khosravi A A,Kundu M,Kuruvilla B A,et al. Appl. Phys.
Lett. ,1995,67 (17) : 2506—2508
[32] Sooklal K,Cullum B S,Angel S M,et al. J. Phys. Chem. ,
1996,100(11) : 4551—4555
[33] Peng W Q,Qu S C,Cong G W,et al. J. Cryst. Growth,2005,
279(3 /4) : 454—460
[34] Bol A A,Meijerink A. J. Phys. Chem. B,2001,105 ( 42 ) :
10197—10202
[35] Chen L,Zhang J H,Luo Y S,et al. Appl. Phys. Lett. ,2004,
84(1) : 112—114
[36] Xie P B,Zhang W P,Yin M,et al. J. Colloid Interface Sci. ,
2000,229(2) : 534—539
[37] Konishi M,Isobe T,Senna M. J. Lumin. ,2001,93(1) : 1—8
[38] Kim D J,Min K D,Lee J W,et al. Mater. Sci. Eng. B,2006,
131(1 /3) : 13—17
[39] Warad H C,Ghosh S C,Hemtanon B,et al. Sci. Technol.
Adv. Mater. ,2005,6(3 /4) : 296—301
[40] Han S D,Singh K C,Lee H S,et al. Mater. Chem. Phys. ,
2008,112(3) : 1083—1087
[41] Lu S W,Lee B I,Wang Z L,et al. J. Lumin. ,2001,92 (1 /
2) : 73—78[42] He Y,Wang H F,Yan X P. Anal. Chem. ,2008,80 ( 10 ) :
3832—3837
[43] Mu J,Gu D Y,Xu Z Z. Mater. Res. Bull. ,2005,40 ( 12 ) :
2198—2204
[44] Sun J,Zhuang J Q,Guan S W,et al. J. Nanopart. Res. ,
2008,10(4) : 653—658
[45] Bol A A,Meijerink A. Phys. Stat. Sol. ( b) ,2001,224 (1 ) :
291—296
[46] Bol A A,Meijerink A. J. Phys. Chem. B,2001,105 ( 42 ) :
10203—10209
[47] Cao L X,Huang S H. J. Lumin. ,2005,114(3 /4) : 293—298
[48] Cao L X,Zhang J H,Ren S L,et al. Appl. Phys. Lett. ,2002,
80(23) : 4300—4302
[49] Huang J M,Yang Y,Xue S H,et al. Appl. Phys. Lett. ,
1997,70(18) : 2335—2337
[50] Hua R N,Niu J H,Li M T,et al. Chem. Phys. Lett. ,2006,
419(1 /3) : 269—272
[51] Dinsmore A D,Hsu D S,Qadri S B,et al. J. Appl. Phys. ,
2000,88(9) : 4985—4993
[52] Wang X F,Xu J J,Chen H Y. J. Phys. Chem. C,2008,112
(45) : 17581—17585
[53] Adachi D,Hasai S, Toynma T, et al. Appl. Phys. Lett. ,
2000,77 (9) : 1301—1303
[54] Toyama T,Adachi D,Okamoto H. Phys. Stat. Sol. ( a ) ,
2008,205(1) : 15—18
[55] Vlasenko N A,Chumachkova M M,Denisova Z L,et al. J.
Cryst. Growth,2000,216(1 /4) : 249—255
[56] Kushida T,Kurita A,Watanabe M,et al. J. Lumin. ,2000,
87 /89: 466—468
[57] Kurita A,Kanematsu Y,Watanabe M,et al. J. Lumin. ,2000,
87 /89: 986—988
[58] Tu R Y,Liu B H,Wang Z Y,et al. Anal. Chem. ,2008,80
(9) : 3458—3465
[59] Wang H F,He Y,Ji T R,et al. Anal. Chem. ,2009,81 (4) :
1615—1621
[60] Kudo A,Sekizawa M. Chem. Commun. ,2000,15: 1371—
1372
[61] Arai T,Senda S I,Sato Y,et al. Chem. Mater. ,2008,20
(5) : 1997—2000
[62] Tsuji I,Kudo A. J. Photochem. Photobiol. A,2003,156 ( 1 /
3) : 249—252
[63] Pouretedal H R,Norozi A,Keshavarz M H,et al. J. Hazard.
Mater. ,2009,162(2 /3) : 674—681
[64] 王海鹰(Wang H Y) ,杨洋(Yang Y) ,卢晓峰( Lu X F) 等. 高
等学校化学学报( Chemical Journal of Chinese Universities) ,
2006,27(9) : 1785—1787
[65] Chen W,Jloy A G,Malm J O,et al. J. Phys. Chem. B,2003,
107(27) : 6544—6551
[66] Althues H,Palkovits R,Rumplecker A,et al. Chem. Mater. ,
2006,18(4) : 1068—1072

[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[3] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[4] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[5] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[6] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[7] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[8] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[9] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[10] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[11] 张婷婷, 洪兴枝, 高慧, 任颖, 贾建峰, 武海顺. 基于铜金属有机配合物的热活化延迟荧光材料[J]. 化学进展, 2022, 34(2): 411-433.
[12] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[13] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[14] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[15] 龚筑轲, 许辉. 晶态咔唑基有机室温磷光材料[J]. 化学进展, 2022, 34(11): 2432-2461.
阅读次数
全文


摘要

掺杂ZnS纳米粒子的制备及应用