English
新闻公告
More
化学进展 2010, Vol. 22 Issue (05): 822-828 前一篇   后一篇

• 综述与评论 •

染料敏化太阳电池中的电子传输及复合*

朱俊; 戴松元**; 张耀红   

  1. (中国科学院等离子体物理研究所 中国科学院新型薄膜太阳电池重点实验室 合肥 230031)
  • 收稿日期:2009-10-24 修回日期:2009-12-13 出版日期:2010-05-24 发布日期:2010-05-05
  • 通讯作者: 戴松元 E-mail:sydai@ipp.ac.cn
  • 基金资助:

    国家重点基础研究发展计划;国家高技术研究发展计划;中国科学院知识创新工程重要方向项目;中科院合肥物质科学研究院知识创新工程青年人才领域前沿项目

Electron Transport and Recombination in Dye Sensitized Solar Cells

Zhu Jun; Dai Songyuan**; Zhang Yaohong   

  1. (Key Lab of Novel Thin Film Solar Cells, Insitute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China)
  • Received:2009-10-24 Revised:2009-12-13 Online:2010-05-24 Published:2010-05-05
  • Contact: Dai Songyuan E-mail:sydai@ipp.ac.cn

电子传输与复合是染料敏化太阳电池中仍然存在争议的基本物理过程,解决这些争议对于进一步提高染料敏化太阳电池的光伏性能及稳定性是至关重要的。多缺陷理论模型用扩散系数及电子寿命这两个基本物理量准确地描述了染料敏化太阳电池中的电子传输及复合。为了对扩散系数及电子寿命等物理参数进行实验测量,近年来,人们发展出了频域、时域以及稳态等多种实验方法和技术手段,本文对这些方法进行了综述,并分别从纳晶半导体光阳极、电解质以及敏化染料等方面评述了近年来电子传输及复合的相关研究进展。

Electron transport and recombination in dye sensitized solar cells is an open question and a key for further improvement of the cell’s performance and stability. The multiple trapping theory model uses two basic physical parameters, the electron lifetime and the diffusion coefficient, to describe the behaviors of electron transport and recombination in dye sensitized solar cells. To measure the electron lifetime and the diffusion coefficient experimentally, researchers have recently developed various methods in frequency domain, time domain and at steady state, reviewed in the paper. Also, the research progress of the behaviors of electron transport and recombination is reviewed from the aspects of the influence of nanocrystalline semiconductor photoanode, electrolyte and dye.

Contents
1 Introduction
2 Theory model of electron transport and recombination in DSC
3 Experimental methods to investigate the electron transport and recombination in DSC
3.1 Electrochemical impedance spectroscopy method
3.2 Intensity modulated photocurrent spectroscopy and intensity modulated photovoltage spectroscopy
3.3 Open circuit voltage decay method
3.4 Short circuit photocurrent method
3.5 Stepped light-induced transient photocurrent and voltage method
3.6 Incident photon to current efficiency method
4 Influence of the materials and the structure of DSC on the electron transport and recombination
4.1 Influence of the photoanode microstructure on the electron transport and recombination
4.2 Influence of the electrolyte components on the electron transport and recombination
4.3 Influence of the dye molecular structure on the electron transport and recombination
5 Conclusion and outlook

中图分类号: 

()

[1 ] O′Regan B,Gratzel M. Nature,1991,353(6346) : 737—740
[2 ] Chiba Y,Islam A,Watanabe Y,et al. Jpn. J. Appl. Phys.
Lett. ,2006,45(24 /28) : L638—L640
[3 ] Gratzel M. Inorg. Chem. ,2005,44(20) : 6841—6851
[4 ] Dai S Y,Weng J,Sui Y F,et al. Inorg. Chim. Acta,2008,
361(3) : 786—791
[5 ] Weng J,Xiao S F,Chen S H,et al. Acta Phys. Sin. ,2007,56
(6) : 3602—3606
[6 ] Sastrawan R, Beier J, Belledin U, et al. Prog. Photovol. ,
2006,14(8) : 697—709
[7 ] Bisquert J. Phys. Chem. Chem. Phys. ,2008,10(1) : 49—72
[8 ] Peter L M. Phys. Chem. Chem. Phys. ,2007,9(21) : 2630—
2642
[9 ] Gregg B A. J. Phys. Chem. B,2003,107(20) : 4688—4698
[10] Bisquert J,Vikhrenko V S. J. Phys. Chem. B,2004,108(7) :
2313—2322
[11] De Jongh P E,Vanmaekelbergh D. Phys. Rev. Lett. ,1996,77
(16) : 3427—3430
[12] Bisquert J,Zaban A. Appl. Phys. A,2003,77 (3 /4) : 507—
514
[13] Kambili A,Walker A B,Qiu F L,et al. Phys. E,2002,14(1 /
2) : 203—209
[14] Van de Lagemaat J,Frank A J. J. Phys. Chem. B,2000,104
(18) : 4292—4294
[15] Fisher A C,Peter L M,Ponomarev E A,et al. J. Phys. Chem.
B,2000,104(5) : 949—958
[16] Dloczik L,Ileperuma O,Lauermann I,et al. J. Phys. Chem.
B,1997,101(49) : 10281—10289
[17] Schlichthorl G,Huang S Y,Sprague J,et al. J. Phys. Chem.
B,1997,101(41) : 8141—8155
[18] Wang Q,Moser J E,Gratzel M. J. Phys. Chem. B,2005,109
(31) : 14945—14953
[19] Bard A J, Faulkner L R. Electrochemical Methods:
Fundamentals and Applications. 2nd ed. New York: John Wiley
& Sons,2000
[20] Zhang C N,Huo Z P,Huang Y,et al. J. Electroanal. Chem. ,
2009,632(1 /2) : 133—138
[21] Zhang C G,Dai J,Huo Z P,et al. Electrochim. Acta,2008,
53(17) : 5503—5508
[22] Duffy N W,Peter L M,Rajapakse R M G,et al. Electrochem.
Commun. ,2000,2(9) : 658—662
[23] Duffy N W,Peter L M,Rajapakse R M G,et al. J. Phys.
Chem. B,2000,104(38) : 8916—8919
[24] Bailes M,Cameron P J,Lobato K,et al. J. Phys. Chem. B,
2005,109(32) : 15429—15435
[25] Jennings J R,Ghicov A,Peter L M,et al. J. Am. Chem.
Soc. ,2008,130(40) : 13364—13372
[26] Zaban A,Greenshtein M,Bisquert J. ChemPhysChem,2003,4
(8) : 859—864
[27] Bisquert J,Fabregat-Santiago F,Mora-Sero I,et al. J. Phys.
Chem. C,2009,113(40) : 17278—17290
[28] Boschloo G,Haggman L,Hagfeldt A. J. Phys. Chem. B,
2006,110(26) : 13144—13150
[29] Boschloo G,Hagfeldt A. J. Phys. Chem. B,2005,109 (24 ) :
12093—12098
[30] Solbrand A,Lindstrom H,Rensmo H,et al. J. Phys. Chem.
B,1997,101(14) : 2514—2518
[31] Kopidakis N,Schiff E A,Park N G,et al. J. Phys. Chem. B,
2000,104(16) : 3930—3936
[32] Nakade S,Kanzaki T,Wada Y,et al. Langmuir,2005,21
(23) : 10803—10807
[33] Barnes P R F,Anderson A Y,Koops S E,et al. J. Phys.
Chem. C,2009,113(3) : 1126—1136
[34] Lindstrom H,Rensmo H,Sodergren S,et al. J. Phys. Chem. ,
1996,100(8) : 3084—3088
[35] Sodergren S,Hagfeldt A,Olsson J,et al. J. Phys. Chem. ,
1994,98(21) : 5552—5556
[36] Nakade S,Matsuda M,Kambe S,et al. J. Phys. Chem. B,
2002,106(39) : 10004—10010
[37] Zhao D,Peng T Y,Lu L L,et al. J. Phys. Chem. C,2008,
112(22) : 8486—8494
[38] Mori S,Sunahara K,Fukai Y,et al. J. Phys. Chem. C,2008,
112(51) : 20505—20509
[39] Fabregat-Santiago F,Barea E M,Bisquert J,et al. J. Am.
Chem. Soc. ,2008,130(34) : 11312—11316
[40] Gerischer H T H,Bunsenges B. Phys. Chem. ,1969,73: 850
[41] Gerischer H T H,Bunsenges B. Phys. Chem. ,1969,73: 251
[42] Keis K,Magnusson E,Lindstrom H,et al. Sol. Energy Mater.
Sol. Cells,2002,73(1) : 51—58
[43] Keis K,Bauer C,Boschloo G,et al. J. Photochem. Photobio.
A,2002,148(1 /3) : 57—64
[44] Martinson A B F,Bisquert J,Hupp J T,et al. J. Phys. Chem.
A,2009,113(16) : 4015—4021
[45] Bach U,Lupo D,Grtzel M,et al. Nature,1998,395(6702) :
583—585
[46] Snaith H J,Gratzel M. Adv. Mater. ,2007,19 ( 21 ) : 3643—
3647
[47] Fabregat-Santiago F,Bisquert J,Cevey L,et al. J. Am. Chem.
Soc. ,2009,131(2) : 558—562
[48] Wang M,Chen P,Humphry-Baker R,et al. ChemPhysChem,
2009,10(1) : 290—299
[49] Burke A,Ito S,Snaith H,et al. Nano Lett. ,2008,8 ( 4 ) :
977—981
[50] Miyashita M,Sunahara K,Nishikawa T,et al. J. Am. Chem.
Soc. ,2008,130(52) : 17874—17881

[1] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[2] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[3] 唐森林, 高欢, 彭颖, 李明光, 陈润锋, 黄维. 钙钛矿光伏电池的非辐射复合损耗及调控策略[J]. 化学进展, 2022, 34(8): 1706-1722.
[4] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[5] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[6] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[7] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[8] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[9] 卢明龙, 张晓云, 杨帆, 王 练, 王育乔. 表界面调控电催化析氧反应[J]. 化学进展, 2022, 34(3): 547-556.
[10] 陈雅琼, 宋洪东, 吴懋, 陆扬, 管骁. 蛋白质-多糖复合体系在活性物质传递中的应用[J]. 化学进展, 2022, 34(10): 2267-2282.
[11] 祝梓琳, 范中贤, 缪梦昭, 黄怀义. 铱(Ⅲ)配合物乏氧肿瘤光动力治疗[J]. 化学进展, 2021, 33(9): 1473-1481.
[12] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.
[13] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[14] 张天永, 吴畏, 朱剑, 李彬, 姜爽. 基于纳米碳填料可拉伸导电聚合物复合材料的制备[J]. 化学进展, 2021, 33(3): 417-425.
[15] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.