English
新闻公告
More
化学进展 2010, Vol. 22 Issue (05): 796-802 前一篇   后一篇

• 特约稿 •

超临界甲醇在化学反应中的应用

王连鸳1; 徐文浩2; 杨基础2*   

  1. (1. 防化指挥工程学院 北京 102205; 2. 清华大学化工系 北京 100084)
  • 收稿日期:2009-10-28 修回日期:2010-03-30 出版日期:2010-05-24 发布日期:2010-05-05
  • 通讯作者: 杨基础 E-mail:yjc-dce@tsinghua.edu.cn

Applications of Supercritical Methanol in Chemical Reactions

Wang Lianyuan1; Xu Wenhao2; Yang Jichu2*   

  1. (1. Institute of Chemical Defence, Beijing 102205, China; 2. Department of Chemical Engineering, Tsinghua University, Beijing 100084, China)
  • Received:2009-10-28 Revised:2010-03-30 Online:2010-05-24 Published:2010-05-05
  • Contact: Yang Jichu E-mail:yjc-dce@tsinghua.edu.cn

超临界流体技术在绿色化工过程中的应用范围不断拓宽。由于超临界甲醇具有独特的物理和化学性质,它既是反应介质,也是反应物,因此,超临界甲醇下的化学反应研究得到人们广泛的关注。本文在介绍超临界甲醇独特的物理化学特性的基础上,综述了近年来超临界甲醇体系在有机合成、生物柴油的制备、生物质处理和高聚物的降解等方面的应用研究进展,重点对超临界甲醇下各种反应的影响因素进行了分析讨论。最后,展望了超临界甲醇在甲醇化工中的应用前景。

One of the very promising and fast growing branches of green chemistry is the application of supercritical fluids for important chemical processes. Due to the unique properties of supercritical methanol, it has attracted much attention and widely used in the green chemical processes. In this paper, after the introduction of the properties of supercritical methanol, recent advances in chemical reactions, such as using supercritical methanol as both of reaction media and reactant for organic synthesis, biodiesel production, biomass transform and polymers decomposition, are reviewed. Details about these chemical reaction conditions and related results are presented. Finally, the outlook of supercritical methanol in the chemical synthesis based on methanol is also proposed.

Contents
1 Introduction
2 Properties of supercritical methanol
2.1 Critical properties of methanol
2.2 Ion-product constant
2.3 Hydrogen bonds
2.4 Electronegativity
2.5 Activated volume
2.6 As reaction medium and reactant
3 Chemical reactions in supercritical methanol
3.1 Organic synthesis
3.2 Biodiesel production
3.3 Transform of biomass
3.4 Decomposition of polymers
4 Conclusion

中图分类号: 

()

[1 ] Jessop P G,Ikariya T,Noyori R. Chem. Rev. ,1999,99:
475—493
[2 ] Baiker A. Chem. Rev. ,1999: 99: 453—474
[3 ] Ikariya T,Kayaki Y. Cata. Surv. Japan,2000,4: 39—50
[4 ] Oakes R S,Clifford A A,Rayner C M. J. Chem. Soc. ,Perkin
Trans. ,2001,1: 917—941
[5 ] Beckman E J. J. Supercri. Fluids,2004,28: 121—191
[6 ] Katritzky A R,Allin S M,Siskin M. Acc. Chem. Res. ,1996,
29: 399—406
[7 ] Savage P E. Chem. Rev. ,1999,99: 603—621
[8 ] Siskin M,Katritzky A R. Chem. Rev. ,2001,101: 825—836
[9 ] 刘志敏( Liu Z M) ,张建玲( Zhang J L) ,韩布兴(Han B X) .
化学进展( Progress in Chemistry) ,2005,17(2) : 266—274
[10] Cheng L,Ye X P,He R H,et al. Fuel Proces. Technol. ,
2009,301—311
[11] Kusdiana D,Saka S. Biores. Technol. ,2004,91: 289—295
[12] 王连鸳(Wang L Y) . 清华大学博士论文(Doctoral Dissertationof Tsinghua University) ,2007
[13] Asahi N,Nakamura Y. Chem. Phys. Lett. ,1998,290 ( 1 ) :
63—67
[14] Eckert C A,Ziger D H,Johnston K P,et al. J. Phys. Chem. ,
1986,90(12) : 2738—2746
[15] Yoshihiro T,Hiroyuki H,Atsushi S,et al. Ind. Eng. Chem.
Res. ,2008,47: 704—709
[16] Oku T,Arita Y,Ikariya T. Adv. Synth. Catal. ,2005,347,
1553—1557
[17] Oku T,Ikariya T. Angew. Chem. Int. Ed. ,2002,41 ( 18 ) :
3476—3479
[18] Bulgarevich D S,Otake K,Sako T,et al. J. Supercri. Fluids,
2003,26(3) : 215—224
[19] Nakagawa T, Ozaki H, Kamitanaka T, et al. J. Supercri.
Fluids,2003,27:255—261
[20] Kamitanaka T,Hikida T,Hayashi S,et al. Tetrahedron Lett. ,
2007,48: 8460—8463
[21] Kamitanaka T,Yamamoto K,Matsuda T,et al. Tetrhedron,
2008,64: 5699—5702
[22] Tang Z,Du Z X,Min E Z,et al. Fluid Phase Equilibria,2006,
239(1) : 8—11
[23] Kusdiana D,Saka S. J. Chem. Eng. Japan,2001,34 ( 3 ) :
383—387
[24] Saka S,Kusdiana D. Fuel,2001,80(2) : 225—231
[25] Warabi Y,Kusidiana D,Saka S. Appl. Biochem. Biotechnol. ,
2004,113 /116: 793—801
[26] Kusdiana D,Saka S. Fuel,2001,80: 693—698
[27] Kusdiana D,Saka S. Biores. Tech. ,2004,91: 289—295
[28] Warabi Y,Kusdiana D,Saka S. Biores. Tech. ,2004,91(3) :
283—287
[29] Demirbas A. Energy Conv. Manag. ,2002,43 ( 17 ) : 2349—
2356
[30] Demirbas A. Energy Conv. Manag. ,2003,44: 2093—2109
[31] Demirbas A. Bioresource Technol. ,2008,99: 1125—1130
[32] Demirbas A. Biomass and Bioenergy,2009,33: 113—118
[33] Imahara H,Minami E,Hari S,et al. Fuel,2008,87: 1—6
[34] Kusidiana D, Saka S. Appl. Biochem. Biotechnol. , 2004,
113 /116: 781—791
[35] Imahara H,Xin J Y,Saka S. Fuel,2009,88: 1329—1332
[36] Suppes G J,Dasari M A,Doskocil E J,et al. Appl. Catal. A:
Gen. ,2004,257: 213—223
[37] 宋成才( Song C C) ,齐永琴(Qi Y Q) ,侯相林(Hou X L) . 能
源工程( Energy Engineering) ,2007,6: 27—29
[38] Toda M,Takagaki A,Okamura M,et al. Nature,2005,438:
178
[39] Wang L Y,Yang J C. Fuel,2007,86: 328—333
[40] Wang L Y,He H Y,Xie Z F,et al. Fuel Processing Technol. ,
2007,88 : 477—481
[41] Tang Z Y,Wang L Y, Yang J C. Europ. J. Lipid Sci.
Technol. ,2007,109: 585—590
[42] 杨基础(Yang J C) ,王连鸳(Wang L Y) ,朱慎林( Zhu S L)
等. CN1944582A,2007
[43] Wang L Y,Tang Z Y,Xu W H,Yang J C. Catal. Commun. ,
2007,8: 1511—1515
[44] Tang Z Y,Wang L Y, Yang J C. Europ. J. Lipid Sci.
Technol. ,2008,110 (8) : 747—753
[45] Wang L Y,Tang Z Y,Xu W H,Yang J C. Inter. Confer.
Bioref. ,Beijing,2007
[46] Wang L Y,Xu W H,Yang J C. Inter. Confer. Exhib. Biomass
Energy Technol. ,Guangzhou,2008
[47] Adschiri T,Hirose S,Malaluan R,Arai K. J. Chem. Eng.
Japan,1993,676—680
[48] Saka S,Ueno T. Cellulose,1999,6: 177—191
[49] Sasaki M,Kabyemela B,Malaluan R. J. Supercri. Fluids,
1998,13: 261—268
[50] Ishikawa Y,Saka S. Cellulose,2001,8(3) : 189—195
[51] Minami E,Saka S. J. Wood Sci. ,2003,49: 73—78
[52] Kucuk M M. Energy Sources,2001,23(4) : 363—368
[53] Erzengin M,Kucuk M M. Energ. Conv. Manag. ,1998,39
(11) : 1203—1206
[54] Demirbas A. Energ. Conv. Manag. ,2001,42:279—294
[55] Demirbas A,Akdeniz F. Energ. Conv. Manag. ,2002,43:
1977—1984
[56] Yamazaki J,Minami E,Saka S. J. Wood Sci. ,2006,52:
527—532
[57] Yang Y,Gilbert A,Xu C B ( Charles) . AIChE J. ,2009,55
(3) : 807—819
[58] Sako T,Sugeta T,Otake K. J. Chem. Eng. Japan,1997,30
(2) : 342—346
[59] Masazumi G,Kunio M,Masayuki T,et al. Proceedings of the
5th International Symposium on Supercritical Fluids,Atlanta,
USA,2000. 226
[60] Goto M,Koyamoto H,Kodama A,et al. J. Phys. : Condens.
Matter,2002,14: 11427—11430
[61] Yang Y,Lu Y J,Xiang H W,et al. Polym. Degrad. Stab. ,
2002,75: 185—191
[62] 王汉夫(Wang H F) ,孙辉( Sun H) ,郑玉斌( Zheng Y B) . 吉
林大学自然科学学报( Acta Scientiarum Naturalium
Universitatis Jilinensis) ,2000,4: 79—82
[63] Genta M,Iwaya T,Sasaki M,et al. Ind. Eng. Chem. Res. ,
2005,44: 3894—3900
[64] Genta M,Iwaya T,Sasaki M,et al. Waste Manag. ,2007,27:
1167—1177
[65] Kurokawa H,Ohshima M,Sugiyama K,et al. Polym. Degrad.
Stab. ,2003,79: 529—533
[66] Asahi N,Sakai K,Kumagai N,et al. Polymer Degradation and
Stability,2004,86:147—151
[67] Zhang H H,Xiang H W,Yang Y,et al. J. Appl. Polym. Sci. ,
2004,92: 2363—2368
[68] Shibata M,Masuda T,Yosomiya R,et al. J. Appl. Polym.
Sci. ,2000,77: 3228—3233
[69] 陈磊( Chen L) ,吴勇强(Wu Y Q) ,倪燕慧( Ni Y H) 等. 化
工学报( Journal of Chemical Industry and Engineering
( China) ) ,2004,55(11) :1787—1792
[70] Shin H Y,Bae S Y. J. Appl. Polym. Sci. ,2008,108: 3467—
3472
[71] Goto T,Yamazaki T,Sugeta T,et al. J. Appl. Polym. Sci. ,
2008,109: 144—151
[72] Lee H S,Jeong J H,Cho H K,et al. Polym. Degrad. Stab. ,
2008,93: 2084—2088
[73] Ozaki J I,Kastria S,Djaja I,et al. Ind. Eng. Chem. Res. ,
2000,39: 245—249

[1] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[2] 周丽, Abdelkrim Yasmine, 姜志国, 于中振, 曲晋. 微塑料:生物效应、分析和降解方法综述[J]. 化学进展, 2022, 34(9): 1935-1946.
[3] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[4] 夏博文, 朱斌, 刘静, 谌春林, 张建. 电催化氧化制备2,5-呋喃二甲酸[J]. 化学进展, 2022, 34(8): 1661-1677.
[5] 李兴龙, 傅尧. 糠醛氧化合成糠酸[J]. 化学进展, 2022, 34(6): 1263-1274.
[6] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[7] 王楠, 周宇齐, 姜子叶, 吕田钰, 林进, 宋洲, 朱丽华. 还原-氧化协同降解全/多卤代有机污染物[J]. 化学进展, 2022, 34(12): 2667-2685.
[8] 曾滴, 刘雪晨, 周沅逸, 王海鹏, 张玲, 王文中. 催化转化呋喃类生物质制备芳香烃化合物的研究[J]. 化学进展, 2022, 34(1): 131-141.
[9] 陈肖萍, 陈巧珊, 毕进红. 光催化降解土壤中多环芳烃[J]. 化学进展, 2021, 33(8): 1323-1330.
[10] 衣晓虹, 王崇臣. 铁基金属-有机骨架及其复合物高级氧化降解水中新兴有机污染物[J]. 化学进展, 2021, 33(3): 471-489.
[11] 毕洪飞, 刘劲松, 吴正颖, 索赫, 吕学良, 付云龙. 硫化铟锌的改性合成及光催化特性[J]. 化学进展, 2021, 33(12): 2334-2347.
[12] 冯勇, 李谕, 应光国. 基于过硫酸盐活化的微界面电子转移氧化技术[J]. 化学进展, 2021, 33(11): 2138-2149.
[13] 王娜娜, 王官武. 机械研磨条件下凝聚态有机合成探究[J]. 化学进展, 2020, 32(8): 1076-1085.
[14] 缪谦, 杨代月. 从含有八元环的稠环芳烃到具有负曲率的碳纳米结构:进展与展望[J]. 化学进展, 2020, 32(11): 1835-1845.
[15] 付如刚, 李政, 高磊. 直接以碳化钙为炔源合成有机化合物[J]. 化学进展, 2019, 31(9): 1303-1313.
阅读次数
全文


摘要

超临界甲醇在化学反应中的应用