English
新闻公告
More
化学进展 2010, Vol. 22 Issue (05): 1010-1020 前一篇   

• 综述与评论 •

金属氧化物两步热化学循环分解水制氢*

祝星; 王华**; 魏永刚; 李孔斋; 晏冬霞   

  1. (昆明理工大学冶金与能源工程学院    昆明    650093)
  • 收稿日期:2009-05-25 修回日期:2009-11-03 出版日期:2010-05-24 发布日期:2010-05-05
  • 通讯作者: 王华 E-mail:wanghuaheat@hotmail.com
  • 基金资助:

    熔融盐中催化天然气制取氢气的应用基础研究;熔融盐中甲烷与氧化锌反应制取合成气和金属锌的基础研究;西部生物质高品位液化基础研究;金属氧化物熔融盐化学循环多级制氢

Hydrogen Production by Two-Step Water-Splitting Thermochemical Cycle Based on Metal Oxide Redox System

Zhu Xing; Wang Hua**; Wei Yonggang; Li Kongzhai; Yan Dongxia   

  1. (Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China)
  • Received:2009-05-25 Revised:2009-11-03 Online:2010-05-24 Published:2010-05-05
  • Contact: Wang Hua E-mail:wanghuaheat@hotmail.com

金属氧化物两步热化学循环分解水制氢技术集太阳能储备与氢能制备于一体,是当前新能源研究和开发领域的热点之一。本文介绍了该技术制氢原理,综述了其关键材料金属氧化物体系和太阳能反应器的研究进展,分析了制约该技术规模化应用的“瓶颈”因素。最后,对近年出现的基于金属氧化物两步热化学循环分解水制氢的两步蒸汽重整新工艺的原理和金属氧化物材料研究进行了介绍,并对该领域的发展趋势进行了展望。

The process of two-step water-splitting thermochemical cycle based on metal oxide redox system is a solar energy storage and hydrogen production technology, which has become one focus in new energy research and development field these days. The principle of this hydrogen production technology is introduced, research progress of key material—metal oxides systems and solar reactor are reviewed, and "bottleneck" on the way to largescale application is analyzed. In the end, two-step steam reforming of methane (two-step SRM) derived from two-step water-splitting thermochemical cycle based on metal oxide redox system in recent years, as well as metal oxide materials involved in this novel technology are discussed. Furthermore, research direction in this field is proposed.

Contents
1 Introduction
2 Principle of hydrogen production process by two-step water-splitting thermochemical cycle based on metal oxide redox system
3 Conventional system
3.1 Single metal oxide system
3.2 Complex metal oxide system
3.3 Impure system
4 A novel system —— two-step steam reforming of methane for hydrogen production
4.1 Single metal oxide system
4.2 Complex metal oxide system
5 Conclusion and outlook

中图分类号: 

()

[1 ] Holladay J D,Hu J,King D L,et al. Catalysis Today,2009,
139: 244—260
[2 ] 刘一鸣( Liu Y M) . 化学与生物工程( Engineering of Chemistry
and Biology) ,2007,24(3) : 73—74
[3 ] 毛宗强( Mao Z Q) . 自然杂志( Chinese Journal of Nature) ,
2006,28(1) : 14—17
[4 ] Kogan A. Int. J. Hydrogen Energy,1997,22(5) : 481—486
[5 ] Funk J E, Reinstrom M R. Final Report Energy Depot
Electrolysis Systems Study,TID 20441,Vol. 2,Supplement A,
1964
[6 ] U. S. Department of Energy. Hydrogen, Fuel Cells and
Infrastructure Technologies Program, Multi-Year Research,
Development and Demonstration Plan, U. S. Department of
Energy,2007
[7 ] 张平( Zhang P) ,于波( Yu B) ,陈靖( Cheng J) 等. 化学进展
( Progress in Chemistry) ,2005,17(4) : 643—650
[8 ] 李鑫( Li X) ,李安定( Li A D) ,李斌( Li B) 等. 太阳能学报
(Acta Energiae Solar Sinica) ,2005,26(1) : 127—133
[9 ] Kaneko H,Yokoyama T,Fuse A. Int. J. Hydrogen Energy,
2006,31: 2256—2265
[10] Stéphane A,Gilles F. Solar Energy,2006,80: 1611—1623
[11] Muller R,Steinfeld A. Chemical Engineering Science,2008,
63: 217—227
[12] Steinfeld A. Solar Energy,2005,78: 603—615
[13] Kodama T,Shimizu T, Satoh T, et al. Energy,2003,28:
1055—1068
[14] 张磊( Zhang L) ,张平( Zhang P) ,王建晨(Wang J C) . 太阳能
学报( Acta Energiae Solaris Sinica) ,2006,27 ( 12 ) : 1263—
1270
[15] Nakamura T. Solar Energy,1977,19: 467—475
[16] Steinfeld A,Sanders S,Palumbo R. Solar Energy,1999,65
(1) : 43—53
[17] Lundberg M. Int. J. Hydrogen Energy,1993,18(5) : 69—76
[18] Weidenkaff A,Steinfeld A,Wokaun A,et al. Solar Energy,
1999,65(1) : 59—69
[19] Weidenkaff A,Reller A W,Wokeun A,et al. Thermochimica
Acta,2000,359: 69—75
[20] Steinfeld A. Int. J. Hydrogen Energy,2002,27: 611—619
[21] Wegner K, Hao C L, Rodrigo J, et al. Int. J. Hydrogen
Energy,2006,31: 55—61
[22] Müuller R,Steinfeld A. Solar Energy,2007,81: 1285—1294
[23] Müller R,Steinfeld A. Chemical Engineering Science,2008,
63: 217—227
[24] Müller R, Lipin′ ski W, Steinfeld A. Applied Thermal
Engineering,2008,28: 524—531
[25] Melchior T,Piatkowski N,Steinfeld A. Chemical Engineering
Science,2009,64: 1095—1101
[26] Charvin P,Stéphane A,Florent L,et al. Energy Conversion and
Management,2008,49: 1547—1556
[27] 颜志鹏(Yan Z P) ,崇明本( Chong M B) ,程党国( Cheng D G)
等. 化学进展( Progress in Chemistry ) ,2008,20 ( 7 /8 ) :
1037—1043
[28] 李孔斋( Li K Z) ,王华(Wang H) ,魏永刚(Wei Y G) 等. 化
学进展( Progress in Chemistry) ,2008,20(9) : 1306—1314
[29] Wei Y G,Wang H, He F, et al. Journal of Natural Gas
Chemistry,2007,16: 6—11
[30] Stéphane A,Gilles F. Solar Energy,2006,80: 1611—1623
[31] Stéphane A,Patrice C, Florent L, et al. Int. J. Hydrogen
Energy,2008,33: 6021—6030
[32] 聂荣佳( Nie R J ) . 鞍山科技大学硕士学位论文( Master
Dissertation of Anshan University of Science and Technology ) ,
2006
[33] 张春雷( Zhang C L) ,彭少逸( Peng S Y) . 高等学校化学学报
( Chemical Journal of Chinese Universities) ,1998,19 ( 10 ) :
1537—1541
[34] 王力军(Wang L J) ,张春雷( Zhang C L) ,李爽( Li S) 等. 无机
化学学报( Chinese Journal of Inorganic Chemistry ) ,1996,12
(4) : 337—381
[35] Tamaura Y,Kojima N,Hasegawa N,et al. Int. J. Hydrogen
Energy,2001,26: 917—922
[36] Kaneko H,Kojima N,Hasegawa N,et al. Int. J. Hydrogen
Energy,2002,27 : 1023—1028
[37] Tamaura Y,Uehara R,Hasegawa N,et al. Solid State Ionics,
2004,172 : 121—124
[38] Kaneko H,Kodama T,Gokon N,et al. Solar Energy,2004,
76: 317—322
[39] Kaneko H,Gokon N,Hasegawa N,et al. Energy,2005,30:
2171—2178
[40] Aoki H,Kaneko H,Hasegawa N,et al. Solid State Ionics,
2004,172: 113—116
[41] Takahashi Y,Aoki H,Kaneko H,et al. Solid State Ionics,
2004,172: 89—91
[42] Tamaura Y,Kaneko H. Solar Energy,2005,78: 616—622
[43] Kaneko H,Kodama T,Gokon N,et al. Solar Energy,2004,
76: 317—322
[44] Tamaura Y,Uehara R,Hasegawa N,et al. Solid State Ionics,
2004,172: 121—124
[45] Kojima M,Sano T,Wada Y, et al. Journal of Physics and
Chemistry of Solids,1996,57(11) : 1757—1763
[46] Tamaura Y,Kojima M,Sano T,et al. Int. J. Hydrogen Energy,
1998,23(12) : 1185—1191
[47] Kaneko H,Yokoyama T, Fuse A, et al. Int. J. Hydrogen
Energy,2006,31: 2256—2265
[48] Wei Y G,Wang H,Li K Z,et al. Journal of Rare Earths,
2007,25( Spec. Issue) : 110—114
[49] Gokon N,Takahashi S,Yamamoto H,et al. Int. J. Hydrogen
Energy,2008,33: 2189—2199
[50] Gokon N,Murayama H,Umeda J, et al. Int. J. HydrogenEnergy,2009,34: 1208—1217
[51] Gokon N,Murayama H,Nagasaki A,et al. Solar Energy,2009,
83: 527—537
[52] Gokon N,Hasegawa T,Takahashi S,et al. Energy,2008,33:
1407—1416
[53] Ishihara H,Kaneko H,Hasegawa N,et al. Energy,2008,33:
1788—1793
[54] Fresno F,Fernandez-Saavedra R,Comez-Mancebo M B,et al.
International Journal of Hydrogen Energy,2009,34(7) : 2918—
2924
[55] 于波(Yu B) ,张平( Zhang P) ,张磊( Zhang L) 等. 中国科学B
辑:化学( Science in China Series B: Chemistry) ,2008,38(6) :
550—556
[56] 张平( Zhang P) ,于波( Yu B) ,张磊( Zhang L) . 中国科学B
辑:化学( Science in Series China B: Chemistry) ,2008,38(7) :
624—630
[57] Kaneko H,Miura T,Ishihara H,et al. Energy,2007,32:
656—663
[58] Tamaura Y,Ueda Y,Matsunami J,et al. Solar Energy,1999,
65(1) : 55—57
[59] Kaneko H,Kodama Y,Gokon N,et a1. Solar Energy,2004,
76: 317—322
[60] Tamaura Y,Hasegawa N,Kojima M,et al. Energy,1998,23
(10) : 879—886
[61] Kaneko H,Ochiai Y,Gokon N,et al. Journal of Physics and
Chemistry of Solids,2001,62: 1341—1347
[62] Kaneko H,Hosokawa Y,Kojima N,et al. Energy,2001,26:
919—929
[63] Alvani C,Ennas G,Barbera L A,et al. Int. J. Hydrogen
Energy,2005,30: 1407—1411
[64] Seralessandri L,Bellusci M,Padella F,et al. Int. J. Hydrogen
Energy,2009,34: 4546—4550
[65] Seralessandri L,Bellusci M,Alvani A,et al. Journal of Solid
Sate Chemistry,2008,181: 1992—1997
[66] 孙长庚( Sun C G) ,刘宗章( Liu Z Z) ,张敏华( Zhang M H) .
化学工业与工程( Chemical Industry and Engineering) ,2004,
21(4) : 276—280
[67] Wei Y G,Wang H, He F, et al. Journal of Natural Gas
Chemistry,2007,16(1) : 6—11
[68] Ao X Q,Wang H,Wei Y G. Energy Conversion & Management,
2008,49(8) : 2063—2068
[69] Li K Z,Wang H,Wei Y G,et al. Journal of Rare Earths,
2008,26(2) : 245—249
[70] Steinfeld A,Kuhn P,Reller A,et al. Int. J. Hydrogen Energy,
1998,23(9) : 767—774
[71] Steinfeld A,Brack M,Meier A,et al. Energy,1998,23(10) :
803—814
[72] Steinfeld A, Spiewak I. Energy Conversion & Management,
1998,39(15) : 1513—1518
[73] Ebrahim H A,Jamshidi E. Trans. IChemE,2001,79 ( A1 ) :
62—70
[74] Forster M. Energy,2004,29: 789—799
[75] Kodama T,Ohtake H,Matsumoto S,et al. Energy,2000,25:
411—425
[76] Shimizu T,Shimizu K,Kitayama Y,et al. Solar Energy,2001,
71(5) : 315—324
[77] Go K S,Son S R,Kim S D,et al. International Journal of
Hydrogen Energy,2009,34(3) : 1301—1309
[78] Kodama T,Shimizu T,Satoh T,et al. Solar Energy,73 ( 5 ) :
363—374
[79] Go K S,Son S R,Kim S D. Int. J. Hydrogen Energy,2008,
33: 5986—5995
[80] Cha K S,Kim H S,Yoo B K,et al. Int. J. Hydrogen Energy,
2009,34: 1801—1808
[81] Evdou A,Zaspalis V,Nalbandian L. Int. J. Hydrogen Energy,
2008,33: 5554—5562

[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[3] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[4] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[5] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[6] 郭琪瑶, 段加龙, 赵媛媛, 周青伟, 唐群委. 混合能量采集太阳能电池―从原理到应用[J]. 化学进展, 2023, 35(2): 318-329.
[7] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[8] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[9] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[10] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[11] 李晓光, 庞祥龙. 液体橡皮泥:属性特征、制备策略及应用探索[J]. 化学进展, 2022, 34(8): 1760-1771.
[12] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[13] 杨一舟, 彭兵权, 雷晓玲, 方海平. 离子溶液中的芳香环:反常化学计量比的二维晶体和其铁磁性[J]. 化学进展, 2022, 34(7): 1524-1536.
[14] 张德善, 佟振合, 吴骊珠. 人工光合作用[J]. 化学进展, 2022, 34(7): 1590-1599.
[15] 高露莎, 李婧汶, 宗慧, 刘千玉, 胡凡生, 陈接胜. 水热体系中的凝聚态及化学反应[J]. 化学进展, 2022, 34(7): 1492-1508.