English
新闻公告
More
化学进展 2010, Vol. 22 Issue (04): 727-733 前一篇   后一篇

• 综述与评论 •

挥发性和半挥发性有机物向二次有机气溶胶转化的机制*

谢绍东**,田晓雪   

  1. (北京大学环境科学与工程学院     北京 100871)
  • 收稿日期:2009-05-14 修回日期:2009-08-04 出版日期:2010-04-24 发布日期:2010-03-30
  • 通讯作者: 谢绍东 E-mail:sdxie@pku.edu.cn
  • 基金资助:

    863项目:珠江三角洲大气复合污染防治技术集成与综合示范

Formation Mechanism of Secondary Organic Aerosols from the Reaction of Volatile and Semi-Volatile Compounds

Xie Shaodong**; Tian Xiaoxue   

  1. (Department of Environmental Science, Peking University, Beijing 100871, China)
  • Received:2009-05-14 Revised:2009-08-04 Online:2010-04-24 Published:2010-03-30
  • Contact: Xie Shaodong E-mail:sdxie@pku.edu.cn

从近20年二次有机气溶胶形成机制的研究成果可发现,挥发性和半挥发性有机物转化为二次有机气溶胶的主要物理化学过程可概述为光化学氧化机制、成核过程、凝结和气/粒分配机制以及非均相反应机制。本文系统总结了这些物理化学反应的发生过程及其影响因素,重点阐述了异戊二烯和甲苯同系物的光氧化机制,总结了二次有机气溶胶气/粒分配的两种理论——吸收机制和吸附机制,评述了发生在颗粒相上的非均相反应对二次有机气溶胶形成的重要作用。最后,对二次有机气溶胶形成机制研究的发展方向进行了展望。

The main physical-chemical processes of secondary organic aerosols (SOA) formation from volatile and semi-volatile compounds can be summarized as photooxidation mechanism, nucleation process, condensation, gas/particle partition and heterogeneous reaction mechanism according to the research about SOA formation mechanism of the last twenty years. These physical-chemical processes and their influence factors are discussed in detail in this paper. Isoprene and toluene and its homologs are focused to illustrate the photooxidation of alkene and aromatic compounds. Two important theories of gas/particle partition, absorption mechanism and adsorption mechanism are analyzed. Heterogeneous reaction is proposed for its substantial effect for SOA formation. At last, some prospects for the study direction of the formation mechanism of SOA are given.

Contents
1 Introduction
2 Main physical and chemical processes of SOA formation
3 Photooxidation mechanism
3.1 Photooxidation mechanism of alkenes
3.2 Photooxidation mechanism of aromatic compounds 
4 Nucleation process, condensation, gas/particle partition 
5 Heterogeneous reaction mechanism 
6 Prospects

中图分类号: 

()

[1 ] Pun B K, Griffin R J, Seigneur C, et al. J. Geophysical Research,2002,107 (D17) : art. no. 4333
[2 ] Atkinson R. Atmos. Environ. ,2000,34: 2063—2101
[3 ] Griffin R J,Dabdub D,Seinfeld J H. J. Geophys. Res. ,2002,107 (D17) : art. no. 4332
[4 ] Lim H J,Turpin B J. Environ. Sci. Technol. ,2002,36:4489— 4496
[5 ] Odum J R,Jungkamp T P W,Griffin R J,et al. Science,1997,276: 96—99
[6 ] Pandis S N,Harley R A,Cass G R,et al. Atmos. Environ. ,1992,26A(13) : 2269—2282
[7 ] Kleindienst T E,Smith D F,Li W,et al. Atmos. Environ. ,1999,33: 3669—3681
[8 ] Lim Y B,Ziemann P J. Environ. Sci. Technol. ,2005,39:9229—9236
[9 ] Colville C J,Griffin R J. Atmos. Environ. ,2004,38: 4013—4023
[10] Takekawa H, Minoura H, Yamazaki S. Atmos. Environ. ,2003,37: 3413—3424
[11] Hao L Q,Wang Z Y,Huang M Q,et al. J. Environ. Sci. ,2005,17: 912—916
[12] Nguyen K, Dabdub D. Aerosol Sci. Technol. , 2002, 36:560—572
[13] Jacob D J. Atmos. Environ. ,2000,34: 2131—2159
[14] Fu T M,Jacob D J,Wittrock F,et al. J. Geophys. Res. ,2008,113: art. no. D15303
[15] Nozière B,Córdova A. J. Phys. Chem. A,2008,112: 2827—2837
[16] Volkamer R,Ziemann P J,Molina M J. Atmos. Chem. Phys.Discuss. ,2008,8: 14841—14892
[17] Claeys M, Bim G,Gyorgy V, et al. Science,2004,303:1173—1176
[18] Hallquist M,Wenger J C, Baltensperger U, et al. Atmos.Chem. Phys. Discuss. ,2009,9: 3555—3762
[19] 王振亚(Wang Z Y) ,郝立庆( Hao L Q) ,张为俊( Zhang W J) . 化学进展( Progress in Chemistry) ,2005,17 ( 4 ) : 732—739
[20] Tunved P,Hansson H C,Kerminen V M,et al. Science,2006,312: 261—263
[21] Jesse H K,Nga L N,Shane M M. Environ. Sci. Technol. ,2006,40: 1869—1877
[22] Dechapanya W,Eusebi A,Kimura Y, et al. Environ. Sci.Technol. ,2003,37: 3671—3679
[23] Forstner H J L, Flagan R C, Seinfeld J H. Environ. Sci.Technol. ,1997,31: 1345—1358
[24] Allen L R,Neil M D,Manish K S,et al. Science,2007,315:1259—1262
[25] Chung S H,Seinfeld J H. J. Geophys. Res. ,2002,107:4407—4441
[26] Tsigaridis K,Kanakidou M. Atmos. Chem. Phys. ,2003,3:1849—1869
[27] Kamens R M, Jaoui M. Environ. Sci. Technol. ,2001,35(7) : 1394—1405
[28] Spittler M,Barnesa I,Bejana I,et al. Atmos. Environ. ,2006,40: S116—S127
[29] Wangberg I,Barnes I,Becker K H. Environ. Sci. Technol. ,1997,31: 2130—2135
[30] Hallquist M,Wangberg I,Ljungstrom E,et al. Environ. Sci.Technol. ,1999,33: 553—559
[31] Linuma Y,Muller C,Boge O,et al. Atmos. Environ. ,2007,41: 5571—5583
[32] Kroll J H, Ng N L, Murphy S M, et al. Environ. Sci.Technol. ,2006,40(6) : 1869—1877
[33] Baltensperger U. Journal of Aerosol Science,2001,32 ( S1 ) :901—908
[34] Pandis S N,Paulson S E,Seinfeld J H. Atmos. Environ. ,1991,25: 997—1008
[35] Edney E O,Kleindienst T E,Jaoui M,et al. Atmos. Environ. ,2005,39: 5281—5289
[36] Novakov T,Penner J E. Nature,1993,365: 823—826
[37] Tsigaridis K, Kanakidou M. Atmos. Environ. , 2007, 41:4682—4692
[38] 汪午(Wang W) ,王省良(Wang S L) ,李黎( Li L) 等. 地球化学(Geochimica) ,2008,37(1) : 77—86
[39] Jang M,Kamens R M. Environ. Sci. Technol. ,2001,35:4758—4766
[40] Surratt J D,Murphy S M,Kroll J H,et al. J. Phys. Chem. A,2006,110 (31) : 9665—9690
[41] Kleeman M J,Ying Q,Lu J,et al. Atmos. Environ. ,2007,41: 576—591
[42] Matsunaga S,Mochida M,Kawamura K. Atmos. Environ. ,2003,37: 2045—2050
[43] Matsunaga S,Mochida M,Kawamura K. J. Geophys. Res. ,2004,109: art. no. D04302
[44] Ervens B,Feingold G,Frost G J,et al. J. Geophys. Res. ,2003,109: art. no. D15205
[45] Perry R A,Atkinson R,Pitts J N. J. Phys. Chem. ,1977,81:296—304
[46] Hao L Q,Wang Z Y,Huang M Q,Fang L,Zhang W J. Journal of Environ. Sci. ,2007,19: 704—708
[47] Hu D,Tolocka M,Li Q F,et al. Atmos. Environ. ,2007,41:6478—6496
[48] Fan J W,Zhang R Y. J. Phys. Chem. A,2006,110: 7728—7737
[49] Paul M L,Christopher C L,Dawn A S. Prog. Energy Combust.Sci. ,2004,30: 1—32
[50] Pankow J F. Atmos. Environ. ,1994,28: 185—188
[51] Pankow J F. Atmos. Environ. ,1994,28: 189—193
[52] Goss K U,Schwarzenbach R P. Environ. Sci. Technol. ,1998,32: 2025—2032
[53] Liang C, Pankow J F, Odum J R, et al. Environ. Sci.Technol. ,1997,31: 3086—3092
[54] Gelencser A,Varga Z. Atmos. Chem. Phys. ,2005,5: 2823—2831
[55] Neil M D,Kara E H H,Bao C,et al. Faraday Discuss. ,2005,130: 295—309
[56] Jang M,Czoschke N M,Lee S,et al. Science,2002,298:814—817
[57] Wang W,Vas G,Dommisse R,et al. Rapid Commun. Mass Spectrom. ,2004,18(16) : 1787—1797
[58] Matsunaga S,Mochida M,Kawamura K. Atmos. Environ. ,2003,37(15) : 2045—2050
[59] Li Y C,Yu J Z. Environ. Sci. Technol. ,2005,39 ( 19 ) :7616—7624

[1] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[2] 国纪良, 彭剑飞, 宋爱楠, 张进生, 杜卓菲, 毛洪钧. 机动车尾气二次有机气溶胶生成研究[J]. 化学进展, 2023, 35(1): 177-188.
[3] 宋欢, 邹琦, 陆克定. HO2非均相摄取系数的测量与参数化[J]. 化学进展, 2021, 33(7): 1175-1187.
[4] 王海潮, 唐明金, 谭照峰, 彭超, 陆克定. 硝酰氯的大气化学[J]. 化学进展, 2020, 32(10): 1535-1546.
[5] 唐荣志, 王辉, 刘莹, 郭松. 大气半/中等挥发性有机物的组成及其对有机气溶胶贡献[J]. 化学进展, 2019, 31(1): 180-190.
[6] 王海潮, 陆克定. 五氧化二氮(N2O5)非均相摄取系数的定量和参数化[J]. 化学进展, 2016, 28(6): 917-933.
[7] 赵倩, 葛云丽, 纪娜, 宋春风, 马德刚, 刘庆岭. 催化氧化技术在可挥发性有机物处理的研究[J]. 化学进展, 2016, 28(12): 1847-1859.
[8] 张晓东, 杨阳, 李红欣, 邹学军, 王玉新. 非TiO2光催化剂去除气态VOCs[J]. 化学进展, 2016, 28(10): 1550-1559.
[9] 祁骞, 周学华, 王文兴. 二次有机气溶胶的水相形成研究[J]. 化学进展, 2014, 26(0203): 458-466.
[10] 马烨, 陈建民, 王琳. 大气有机硫酸酯化合物的特征及形成机制[J]. 化学进展, 2012, 24(11): 2277-2286.
[11] 刘利 王东. “水上” (“on water”) 有机反应*[J]. 化学进展, 2010, 22(07): 1233-1241.
[12] 孙剑 李晓辉 刘守新. 吸附—光催化联用去除室内挥发性有机物*[J]. 化学进展, 2009, 21(10): 2067-2076.
[13] 葛茂发,马春平. 活性卤素化学*[J]. 化学进展, 2009, 21(0203): 307-334.
[14] 李俊宁,王丽娜,齐涛,初景龙,刘长厚,张懿. 介孔气体吸附剂*[J]. 化学进展, 2008, 20(06): 851-858.
[15] 金顺平,李建权,韩海燕,王鸿梅,储焰南,周士康. 质子转移反应质谱在线检测痕量挥发性有机物*[J]. 化学进展, 2007, 19(06): 996-1006.