English
新闻公告
More
化学进展 2010, Vol. 22 Issue (04): 654-662 前一篇   后一篇

• 综述与评论 •

生物质半纤维素稀酸水解反应*

金强1,2;张红漫3;严立石1,2;黄和1,2**   

  1. (1. 南京工业大学生物与制药工程学院 南京 210009; 2. 南京工业大学材料化学工程国家重点实验室 南京 210009; 3. 南京工业大学理学院 南京 210009)
  • 收稿日期:2009-05-06 修回日期:2009-09-01 出版日期:2010-04-24 发布日期:2010-03-30
  • 通讯作者: 黄和 E-mail:biotech@njut.edu.cn
  • 基金资助:

    国家自然科学基金项目;NSFC-广东联合基金项目;中石化科技开发项目;国家高技术发展计划(863)项目

Dilute Acid Hydrolysis Reaction of Biomass Hemicellulose

Jin Qiang1,2; Zhang Hongman3; Yan Lishi1,2; Huang He1,2**   

  1. (1.College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, China;2.State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China;3.College of Science, Nanjing University of Technology, Nanjing 210009, China)
  • Received:2009-05-06 Revised:2009-09-01 Online:2010-04-24 Published:2010-03-30
  • Contact: Huang He E-mail:biotech@njut.edu.cn
  • Supported by:

    National Natural Science Foundation of China

半纤维素是木质纤维素类生物质中第二大组分,半纤维素的高效、低成本转化是实现木质纤维素类生物质转化工艺实用化的一个技术关键。稀酸水解技术被广泛应用于水解生物质半纤维素,其对半纤维素糖的转化率高,得到的糖可进一步发酵生产燃料乙醇等。半纤维素还可直接水解制低聚糖等功能性食品和糠醛等化工产品。本文综述了半纤维素稀酸水解反应的研究进展。介绍了半纤维素的基本结构特征,解析了稀酸催化半纤维素水解的反应机理及反应网络,评述了半纤维素水解过程中反应条件等对目标产物的影响,并总结了半纤维素稀酸水解动力学模型。在此基础上,对今后半纤维素稀酸水解反应的研究方向与水解产物的利用进行了展望。

Hemicellulose is the second largest component of lignocellulosic biomass. The conversion of hemicellulose with high efficiency and low costs is a key technology to industrial lignocellulosic biomass conversion process. Dilute acid hydrolysis technology is widely used in biomass hemicellulose hydrolysis. It has the advantages of high efficiency for hemicellulosic sugar conversion, and the obtained sugar can be used to produce fuel ethanol further. Hemicellulose can be also hydrolyzed directly to produce functional food such as oligosaccharides and chemical products such as furfural. In this paper, the progress of hemicellulose hydrolysis reaction with dilute acid is reviewed. The basic structure characterization of hemicellulose is introduced. The mechanism of the dilute acid catalytic hydrolysis reaction and reaction networks are discussed. The influences of different catalysts and reaction conditions on the target products are remarked. The hemicellulose hydrolysis kinetic models are summarized. The paper also indicates the future research trend of hemicellulose dilute acid hydrolysis reaction and utilization for its hydrolysates.

Contents
1 Introduction
2 Structure and characterization of hemicellulose
3 Dilute acid hydrolysis mechanism and reaction network of hemicellulose
4 Factors influencing hemicellulose hydrolysis reaction with dilute acid
5 Dilute acid hydrolysis kinetic models of hemicellulose
6 Conclusion and prospects

中图分类号: 

()

[1 ] Zaldivar J,Nielsen J,Olssson L. Appl. Microbiol. Biotechnol. ,2001,56:17—34
[2 ] Lynd L R,Laser M S,Bransby D,et al. Nat. Biotechnol. ,2008,26: 169—172
[3 ] Wyman C E. Biotechnol. Progr. ,2003,19: 254—262
[4 ] Juslin M,Paronen P. J. Pharm. Pharmacol. ,1984,36: 256—257
[5 ] Mamman A S,Lee J M,Kim Y C,et al. Biofpr. ,2008,2:438—454
[6 ] Yang B,Wyman C E. Prog. Chem. ,2007,19: 1072—1075
[7 ] Sun Y,Cheng J. Bioresour. Technol. ,2002,83: 1—11
[8 ] 何北海(He B H) ,林鹿( Lin L) ,孙润仓( Sun R C) 等. 化学进展( Progress in Chemistry) ,2007,19(7 /8) : 1141—1146
[9 ] Yang B,Wyman C E. Biofpr. ,2008,2: 26—40
[10] Mosier N,Wyman C,Dale B, et al. Bioresour. Technol. ,2005,96: 673—686
[11] Schell D J, Farmer J,Newman M, et al. Appl. Biochem.Biotechnol. ,2003,105 /108: 69—85
[12] Aden A,Ruth M,Ibsen K,et al. Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover. NREL /TP-510-32438, 2002. National Renewable Energy Laboratory. Golden,CO
[13] Sun J X,Sun X F,Sun R C,at al. Carbohydr. Polym. ,2004,56: 195—204
[14] Gray K A,Zhao L,Emptage M. Curr. Opin. Chem. Biol. ,2006,10: 141—146
[15] Saha B C. J. Ind. Microbiol. Biotechnol. ,2003,30: 279—291
[16] Chen H Z,Liu L Y. Bioresour. Technol. ,2007,98: 666—676
[17] Chaikumpollert O, Methacanon P, Suchiva K. Carbohydr.Polym. ,2004,57: 191—196
[18] Sluiter A,Hames B,Ruiz R,et al. Determination of Sugars,Byproducts,and Degradation Products in Liquid Fraction Process Samples. NREL /TP-510-42623, 2006. National Renewable Energy Laboratory. Golden,CO
[19] Viamajala S,McMillan J D, Schell D J, et al. Bioresour.Technol. ,2009,100: 925—934
[20] Lee Y Y, Iyer P, Torget R W. Adv. Biochem. Eng. /Biotechnol. ,1999,65: 93—115
[21] Canettieri E V,Rocha G J,Carvalho J A,et al. Bioresour.Technol. ,2007,98: 422—428
[22] Lu X B,Zhang Y M,Liang Y,et al. Chem. Biochem. Eng.Q. ,2008,22: 137—142
[23] Liu C,Wyman C E. Ind. Eng. Chem. Res. ,2003,42:5409—5416
[24] Lee Y Y,Wu Z,Torget R W. Bioresour. Technol. ,2000,71:29—39
[25] Ingram T,Rogalinski T,Bockemühl V,et al. J. Supercrit.Fluids,2009,48: 238—246
[26] Yu Y,Lou X,Wu H. Energy Fuels,2008,22: 46—60
[27] Mosier N,Hendrickson R,Ho N,et al. Bioresour. Technol. ,2005,96: 1986—1993
[28] Lavarack B P,Griffin G J,Rodman D. Biomass Bioenergy,2002,23: 367—380
[29] Mosier N S, Sarikaya A, Ladisch C M, et al. Biotechnol.Progr. ,2001,17: 474—480
[30] Chong A R,Ramírez J A,Garrote G. J. Food Eng. ,2004,61:143—152
[31] Lu Y,Mosier N S. Biotechnol. Bioeng. ,2008,101: 1170—1181
[32] Qian X,Nimlos M R,Davis M,et al. Carbohydr. Res. ,2005,340: 2319—2327
[33] Kootstra A M J,Mosier N S,Scott E L,et al. Biochem. Eng.J. ,2008,43: 92—97
[34] Antal M J,Leesomboon T,Mok W S,et al. Carbohydr. Res. ,1991,217: 71—85
[35] Girisuta B,Danon B,Manurung R,et al. Bioresour. Technol. ,2008,99: 8367—8375
[36] Marzialetti T,Olarte M B V,Sievers C,et al. Ind. Eng. Chem.Res. ,2008,47: 7131—7140
[37] Nabarlatz D,Farriol X,Montané D. Ind. Eng. Chem. Res. ,2004,43: 4124—4131
[38] Gámez S,González-Cabriales J J,Ramírez J A,et al. J. Food Eng. ,2006,74: 78—88
[39] Nabarlatz D,Ebringerová A,Mantané D. Carbohydr. Ploym. ,2007,69: 20—28
[40] Kalman G,Varga E,Reczey K. Chem. Biochem. Eng. Q. ,2002,16: 151—157
[41] Tillman L M,Lee Y Y,Torget R. Appl. Biochem. Biotechnol. ,1990,24 /25: 103—113
[42] Chundawat S P S, Venkatesh B, Dale B E. Biotechnol.Bioeng. ,2007,96: 219—231
[43] Zhu Y M, Lee Y Y, Elander R T. Appl. Biochem.Biotechnol. ,2004,117: 103—114
[44] Van Walsum G P, Shi H. Bioresour. Technol. ,2004,93:217—226
[45] Nguyen Q A,Tucker M P. US 6423145,2002
[46] Saha B C,Iten L B,Cotta M A,et al. Biotechnol. Progr. ,2005,21: 816—822
[47] Yuan C M,Yan Y J,Ren Z W,et al. The Chinese Journal of Process Engineering,2004,4(1) : 64—68
[48] Mansilla H,Baeza J,Urzúa S, et al. Bioresour. Technol. ,1998,66: 189—193
[49] Liu C,Wyman C E. Carbohydr. Res. ,2006,341: 2550—2556
[50] Zhu S,Wu Y,Yu Z,et al. Biosyst. Eng. ,2006,93: 279—283
[51] Pan X J,Arato C,Gilkes N,et al. Biotechnol. Bioeng. ,2005,90: 473—481
[52] Jacobsen S E,Wyman C E. Appl. Biochem. Biotechnol. ,2000,84—86: 81—96
[53] Saeman J F. Ind. Eng. Chem. ,1945,37: 43—52
[54] Bhandari N, Macdonald D G. , Bakhshi N N. Biotechnol.Bioeng. ,1984,26: 320—327
[55] Yan L S,Zhang H M,Chen J W,et al. Bioresour. Technol. ,2009,100: 1803—1808
[56] Kobayashi T,Sakai Y. Bull. Agr. Chem. Soc. Japan,1956,20: 1—7
[57] Esteghlalian A,Hashimoto A G,Fenske J J,et al. Bioresour.Technol. ,1997,59: 129—136
[58] Mehlberg R,Tsao G T. Low Liquid Hemicellulose Hydrolysis Hydrochloric Acid. 178th ACS National Meeting. Washington DC: ACS,1979
[59] Chen R,Lee Y Y,Torget R W. Appl. Biochem. Biotechnol. ,1996,57 /58: 133—146
[60] Jensen J,Morinelly J,Aglan A,at al. AIChE J. ,2008,54:1637—1645
[61] Yat S C,Berger A,Shonnard D R. Bioresour. Technol. ,2008,99: 3855—3863
[62] Carrasco F,Roy C. Wood Sci. Technol. ,1992,26: 189—208
[63] Lloyd T,Wyman C E. Appl. Biochem. Biotechnol. ,2003,105 /108: 53—67
[64] Springer E L,Harris J F. Ind. Eng. Chem. Prod. Res. Dev. ,1985,24: 485—589
[65] Maloney M T,Chapman T W,Baker A J. Biotechnol. Bioeng. ,1985,27: 355—361
[66] Overend R P,Chornet E. Phil. Trans. R. Soc. Lond A,1987,321: 523—536
[67] Chum H L,Johnson D K,Black S K,et al. Appl. Biochem.Biotechnol. ,1990,24 /25: 1—14
[68] Abatzoglou N,Chornet E,Belkacemi K,at al. Chem. Eng.Sci. ,1992,47: 1109—1122
[69] Mochidzuki K, Sakoda A, Suzuki M. Adv. Environ. Res. ,2003,7: 421
[70] 徐明忠(Xu M Z) ,庄新姝( Zhuang X S) ,袁振宏(Yuan Z H)等. 过程工程学报( The Chinese Journal of Process Engineering) ,2008,8(5) : 941—944
[71] Kim S B,Yum D M,Park S C. Bioresour. Technol. ,2000,72: 289—294
[72] Dan V,Tim E. US 6927048,2005
[73] 高振(Gao Z) ,张昆( Zhang K) ,黄和(Huang H) 等. 化学进展( Progress in Chemistry) ,2009,21(1) : 251—258

[1] 戚琦, 徐佩珠, 田志东, 孙伟, 刘杨杰, 胡翔. 钠离子混合电容器电极材料的研究进展[J]. 化学进展, 2022, 34(9): 2051-2062.
[2] 彭诚, 吴乐云, 徐志建, 朱维良. 副本交换分子动力学[J]. 化学进展, 2022, 34(2): 384-396.
[3] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[4] 丁朝, 杨维结, 霍开富, Leon Shaw. LiBH4储氢热力学和动力学调控[J]. 化学进展, 2021, 33(9): 1586-1597.
[5] 张维佳, 邵学广, 蔡文生. 抗冻蛋白抗冻机制的分子模拟研究[J]. 化学进展, 2021, 33(10): 1797-1811.
[6] 潘志君, 庄巍, 王鸿飞. 凝聚态化学研究中的动力学振动光谱理论与技术[J]. 化学进展, 2020, 32(8): 1203-1218.
[7] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[8] 顾婷婷, 顾坚, 张喻, 任华. 金属硼氢化物基固态储氢体系[J]. 化学进展, 2020, 32(5): 665-686.
[9] 陈淏川, 付浩浩, 邵学广, 蔡文生. 重要性采样方法与自由能计算[J]. 化学进展, 2018, 30(7): 921-931.
[10] 王建东, 许家喜. 含邻手性碳原子双键亲电加成反应的立体选择性模型[J]. 化学进展, 2016, 28(6): 784-800.
[11] 李超, 范美强, 陈海潮, 陈达, 田光磊, 舒康颖. Li-Mg-N-H体系储氢材料的热力学和动力学调控[J]. 化学进展, 2016, 28(12): 1788-1797.
[12] 袁正求, 龙金星, 张兴华, 夏莹, 王铁军, 马隆龙. 木质纤维素催化转化制备能源平台化合物[J]. 化学进展, 2016, 28(1): 103-110.
[13] 刘新, 吴川, 吴锋, 白莹. 轻金属配位氢化物储氢体系[J]. 化学进展, 2015, 27(9): 1167-1181.
[14] 王霄, 许吉英, 陈义. 生物分子相互作用动力学的表面等离子体共振研究方法[J]. 化学进展, 2015, 27(5): 550-558.
[15] 蒋斌波, 袁世岭, 陈楠, 王海波, 王靖岱, 黄正梁. VPO催化氧化正丁烷反应动力学[J]. 化学进展, 2015, 27(11): 1679-1688.
阅读次数
全文


摘要

生物质半纤维素稀酸水解反应*