
生物质半纤维素稀酸水解反应*
Dilute Acid Hydrolysis Reaction of Biomass Hemicellulose
半纤维素是木质纤维素类生物质中第二大组分,半纤维素的高效、低成本转化是实现木质纤维素类生物质转化工艺实用化的一个技术关键。稀酸水解技术被广泛应用于水解生物质半纤维素,其对半纤维素糖的转化率高,得到的糖可进一步发酵生产燃料乙醇等。半纤维素还可直接水解制低聚糖等功能性食品和糠醛等化工产品。本文综述了半纤维素稀酸水解反应的研究进展。介绍了半纤维素的基本结构特征,解析了稀酸催化半纤维素水解的反应机理及反应网络,评述了半纤维素水解过程中反应条件等对目标产物的影响,并总结了半纤维素稀酸水解动力学模型。在此基础上,对今后半纤维素稀酸水解反应的研究方向与水解产物的利用进行了展望。
Hemicellulose is the second largest component of lignocellulosic biomass. The conversion of hemicellulose with high efficiency and low costs is a key technology to industrial lignocellulosic biomass conversion process. Dilute acid hydrolysis technology is widely used in biomass hemicellulose hydrolysis. It has the advantages of high efficiency for hemicellulosic sugar conversion, and the obtained sugar can be used to produce fuel ethanol further. Hemicellulose can be also hydrolyzed directly to produce functional food such as oligosaccharides and chemical products such as furfural. In this paper, the progress of hemicellulose hydrolysis reaction with dilute acid is reviewed. The basic structure characterization of hemicellulose is introduced. The mechanism of the dilute acid catalytic hydrolysis reaction and reaction networks are discussed. The influences of different catalysts and reaction conditions on the target products are remarked. The hemicellulose hydrolysis kinetic models are summarized. The paper also indicates the future research trend of hemicellulose dilute acid hydrolysis reaction and utilization for its hydrolysates.
Contents
1 Introduction
2 Structure and characterization of hemicellulose
3 Dilute acid hydrolysis mechanism and reaction network of hemicellulose
4 Factors influencing hemicellulose hydrolysis reaction with dilute acid
5 Dilute acid hydrolysis kinetic models of hemicellulose
6 Conclusion and prospects
半纤维素 / 水解反应 / 动力学 / 燃料乙醇 {{custom_keyword}} /
hemicellulose / hydrolysis reaction / kinetics / fuel ethanol {{custom_keyword}} /
[1 ] Zaldivar J,Nielsen J,Olssson L. Appl. Microbiol. Biotechnol. ,2001,56:17—34
[2 ] Lynd L R,Laser M S,Bransby D,et al. Nat. Biotechnol. ,2008,26: 169—172
[3 ] Wyman C E. Biotechnol. Progr. ,2003,19: 254—262
[4 ] Juslin M,Paronen P. J. Pharm. Pharmacol. ,1984,36: 256—257
[5 ] Mamman A S,Lee J M,Kim Y C,et al. Biofpr. ,2008,2:438—454
[6 ] Yang B,Wyman C E. Prog. Chem. ,2007,19: 1072—1075
[7 ] Sun Y,Cheng J. Bioresour. Technol. ,2002,83: 1—11
[8 ] 何北海(He B H) ,林鹿( Lin L) ,孙润仓( Sun R C) 等. 化学进展( Progress in Chemistry) ,2007,19(7 /8) : 1141—1146
[9 ] Yang B,Wyman C E. Biofpr. ,2008,2: 26—40
[10] Mosier N,Wyman C,Dale B, et al. Bioresour. Technol. ,2005,96: 673—686
[11] Schell D J, Farmer J,Newman M, et al. Appl. Biochem.Biotechnol. ,2003,105 /108: 69—85
[12] Aden A,Ruth M,Ibsen K,et al. Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover. NREL /TP-510-32438, 2002. National Renewable Energy Laboratory. Golden,CO
[13] Sun J X,Sun X F,Sun R C,at al. Carbohydr. Polym. ,2004,56: 195—204
[14] Gray K A,Zhao L,Emptage M. Curr. Opin. Chem. Biol. ,2006,10: 141—146
[15] Saha B C. J. Ind. Microbiol. Biotechnol. ,2003,30: 279—291
[16] Chen H Z,Liu L Y. Bioresour. Technol. ,2007,98: 666—676
[17] Chaikumpollert O, Methacanon P, Suchiva K. Carbohydr.Polym. ,2004,57: 191—196
[18] Sluiter A,Hames B,Ruiz R,et al. Determination of Sugars,Byproducts,and Degradation Products in Liquid Fraction Process Samples. NREL /TP-510-42623, 2006. National Renewable Energy Laboratory. Golden,CO
[19] Viamajala S,McMillan J D, Schell D J, et al. Bioresour.Technol. ,2009,100: 925—934
[20] Lee Y Y, Iyer P, Torget R W. Adv. Biochem. Eng. /Biotechnol. ,1999,65: 93—115
[21] Canettieri E V,Rocha G J,Carvalho J A,et al. Bioresour.Technol. ,2007,98: 422—428
[22] Lu X B,Zhang Y M,Liang Y,et al. Chem. Biochem. Eng.Q. ,2008,22: 137—142
[23] Liu C,Wyman C E. Ind. Eng. Chem. Res. ,2003,42:5409—5416
[24] Lee Y Y,Wu Z,Torget R W. Bioresour. Technol. ,2000,71:29—39
[25] Ingram T,Rogalinski T,Bockemühl V,et al. J. Supercrit.Fluids,2009,48: 238—246
[26] Yu Y,Lou X,Wu H. Energy Fuels,2008,22: 46—60
[27] Mosier N,Hendrickson R,Ho N,et al. Bioresour. Technol. ,2005,96: 1986—1993
[28] Lavarack B P,Griffin G J,Rodman D. Biomass Bioenergy,2002,23: 367—380
[29] Mosier N S, Sarikaya A, Ladisch C M, et al. Biotechnol.Progr. ,2001,17: 474—480
[30] Chong A R,Ramírez J A,Garrote G. J. Food Eng. ,2004,61:143—152
[31] Lu Y,Mosier N S. Biotechnol. Bioeng. ,2008,101: 1170—1181
[32] Qian X,Nimlos M R,Davis M,et al. Carbohydr. Res. ,2005,340: 2319—2327
[33] Kootstra A M J,Mosier N S,Scott E L,et al. Biochem. Eng.J. ,2008,43: 92—97
[34] Antal M J,Leesomboon T,Mok W S,et al. Carbohydr. Res. ,1991,217: 71—85
[35] Girisuta B,Danon B,Manurung R,et al. Bioresour. Technol. ,2008,99: 8367—8375
[36] Marzialetti T,Olarte M B V,Sievers C,et al. Ind. Eng. Chem.Res. ,2008,47: 7131—7140
[37] Nabarlatz D,Farriol X,Montané D. Ind. Eng. Chem. Res. ,2004,43: 4124—4131
[38] Gámez S,González-Cabriales J J,Ramírez J A,et al. J. Food Eng. ,2006,74: 78—88
[39] Nabarlatz D,Ebringerová A,Mantané D. Carbohydr. Ploym. ,2007,69: 20—28
[40] Kalman G,Varga E,Reczey K. Chem. Biochem. Eng. Q. ,2002,16: 151—157
[41] Tillman L M,Lee Y Y,Torget R. Appl. Biochem. Biotechnol. ,1990,24 /25: 103—113
[42] Chundawat S P S, Venkatesh B, Dale B E. Biotechnol.Bioeng. ,2007,96: 219—231
[43] Zhu Y M, Lee Y Y, Elander R T. Appl. Biochem.Biotechnol. ,2004,117: 103—114
[44] Van Walsum G P, Shi H. Bioresour. Technol. ,2004,93:217—226
[45] Nguyen Q A,Tucker M P. US 6423145,2002
[46] Saha B C,Iten L B,Cotta M A,et al. Biotechnol. Progr. ,2005,21: 816—822
[47] Yuan C M,Yan Y J,Ren Z W,et al. The Chinese Journal of Process Engineering,2004,4(1) : 64—68
[48] Mansilla H,Baeza J,Urzúa S, et al. Bioresour. Technol. ,1998,66: 189—193
[49] Liu C,Wyman C E. Carbohydr. Res. ,2006,341: 2550—2556
[50] Zhu S,Wu Y,Yu Z,et al. Biosyst. Eng. ,2006,93: 279—283
[51] Pan X J,Arato C,Gilkes N,et al. Biotechnol. Bioeng. ,2005,90: 473—481
[52] Jacobsen S E,Wyman C E. Appl. Biochem. Biotechnol. ,2000,84—86: 81—96
[53] Saeman J F. Ind. Eng. Chem. ,1945,37: 43—52
[54] Bhandari N, Macdonald D G. , Bakhshi N N. Biotechnol.Bioeng. ,1984,26: 320—327
[55] Yan L S,Zhang H M,Chen J W,et al. Bioresour. Technol. ,2009,100: 1803—1808
[56] Kobayashi T,Sakai Y. Bull. Agr. Chem. Soc. Japan,1956,20: 1—7
[57] Esteghlalian A,Hashimoto A G,Fenske J J,et al. Bioresour.Technol. ,1997,59: 129—136
[58] Mehlberg R,Tsao G T. Low Liquid Hemicellulose Hydrolysis Hydrochloric Acid. 178th ACS National Meeting. Washington DC: ACS,1979
[59] Chen R,Lee Y Y,Torget R W. Appl. Biochem. Biotechnol. ,1996,57 /58: 133—146
[60] Jensen J,Morinelly J,Aglan A,at al. AIChE J. ,2008,54:1637—1645
[61] Yat S C,Berger A,Shonnard D R. Bioresour. Technol. ,2008,99: 3855—3863
[62] Carrasco F,Roy C. Wood Sci. Technol. ,1992,26: 189—208
[63] Lloyd T,Wyman C E. Appl. Biochem. Biotechnol. ,2003,105 /108: 53—67
[64] Springer E L,Harris J F. Ind. Eng. Chem. Prod. Res. Dev. ,1985,24: 485—589
[65] Maloney M T,Chapman T W,Baker A J. Biotechnol. Bioeng. ,1985,27: 355—361
[66] Overend R P,Chornet E. Phil. Trans. R. Soc. Lond A,1987,321: 523—536
[67] Chum H L,Johnson D K,Black S K,et al. Appl. Biochem.Biotechnol. ,1990,24 /25: 1—14
[68] Abatzoglou N,Chornet E,Belkacemi K,at al. Chem. Eng.Sci. ,1992,47: 1109—1122
[69] Mochidzuki K, Sakoda A, Suzuki M. Adv. Environ. Res. ,2003,7: 421
[70] 徐明忠(Xu M Z) ,庄新姝( Zhuang X S) ,袁振宏(Yuan Z H)等. 过程工程学报( The Chinese Journal of Process Engineering) ,2008,8(5) : 941—944
[71] Kim S B,Yum D M,Park S C. Bioresour. Technol. ,2000,72: 289—294
[72] Dan V,Tim E. US 6927048,2005
[73] 高振(Gao Z) ,张昆( Zhang K) ,黄和(Huang H) 等. 化学进展( Progress in Chemistry) ,2009,21(1) : 251—258
国家自然科学基金项目;NSFC-广东联合基金项目;中石化科技开发项目;国家高技术发展计划(863)项目
/
〈 |
|
〉 |