English
新闻公告
More
化学进展 2010, Vol. 22 Issue (04): 648-653 前一篇   后一篇

• 综述与评论 •

环肽纳米管的应用研究

唐敏;樊建芬*;刘健;何梁君;何珂   

  1. (苏州大学材料与化学化工学部 苏州 215123)
  • 收稿日期:2009-05-11 修回日期:2009-08-05 出版日期:2010-04-24 发布日期:2010-03-30
  • 通讯作者: 樊建芬 E-mail:jffan1305@163.com

Applications of Cyclic Peptide Nanotubes

Tang Min; Fan Jianfen*; Liu Jian; He Liangjun; He Ke   

  1. ( College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China)
  • Received:2009-05-11 Revised:2009-08-05 Online:2010-04-24 Published:2010-03-30
  • Contact: Fan Jianfen E-mail:jffan1305@163.com

环肽分子通过主链骨架中C=O和N-H形成分子间网络氢键,以β-片层反平行方式堆积可形成中空管状结构。通过控制环肽的结构和尺寸,或修饰具有不同功能的基团,可获得多种结构和性能的肽纳米管。本文综述了环肽分子自组装成纳米管的应用研究成果。首先介绍了带合适疏水性侧链的环肽纳米管在模拟生物跨膜离子通道方面的实验和理论研究进展,重点论及环肽纳米管的结构、极性和侧链的疏水性等对离子通道传输行为的影响以及分子动力学(MD)模拟研究水通道的进展。进而介绍了环肽纳米管用作生物传感器模板,与功能性(如电性、光学性和磁性)纳米材料合成制备生物传感器的实验研究成果,接着介绍了环肽纳米管作为药物或药物载体潜在的应用前景,特别是在某些抗菌和抗感染药物开发设计中的应用以及环肽在不同极性的环境中自组装过程微观机制的MD模拟研究,最后介绍了环肽纳米管作为模板,制备磁性、电性纳米材料方面的实验和理论研究进展。

Cyclopeptides, adopting β-sheet-like arrangements, can easily stack to form hollow tubular ensembles through the intermolecular hydrogen-bond network. A wide range of multi-structural and functional cyclopeptide nanotubes can be produced by changing the structures and numbers of peptide subunits employed or modifying with variant functional groups. Firstly, the present paper reviews the application progress of the experimental and theoretical researches of self-assembling cyclopeptide nanotubes mimicking biologic transmembrane channels, focusing on the influences of the structures, polarities and hydrophobic properties on the transportation properties and the progress of molecular dynamic (MD) simulations of cyclopeptide nanotubes as water transportation channels. Secondly, the experimental research advances of cyclopeptide nanotubes using as the templets to produce biosensors by synthesis with functional nanomaterials such as electronic, optical and magnetic ones. The following brings forth the potential application foregrounds of cyclopeptide nanotubes functionating as medicines or drug carriers, especially in developing antibacterial and anti-infectional drugs. Finally, the experimental and theoretical research progress of the applications of cyclopeptide nanotubes functionating as the templets to prepare magnetic and electronic nanomaterials is reviewed.

Contents
1 Introduction
2 Applications of cyclic peptide nanotubes
2.1 Transmembrane ion channels
2.2 Biosensors
2.3 Antibacterial and drug-delivery agents
2.4 Megnetic and electronic nanomaterials
3 Outlook

中图分类号: 

()

[1 ] Ghadiri M R,Granja J R,Milligan R,et al. Nature,1993,366: 324—327
[2 ] Hartgerink J D,Granja J R,Milligan R A, et al. J. Am.Chem. Soc. ,1996,118(1) : 43—50
[3 ] Seebach D,Matthews J L,Meden A,et al. Helvetica Chimica Acta,1997,80: 173—182
[4 ] Clark T D,Buriak J M,Kobayashi K,et al. J. Am. Chem.Soc. ,1998,120(35) : 8949—8962
[5 ] Ranganathan D,Lakshmi C,Karle I L,et al. J. Am. Chem.Soc. ,1999,121(26) : 6103—6107
[6 ] Gauthier D,Baillargeon P,Drouin M,et al. Angew. Chem.Int. Ed. ,2001,40(24) : 4635—4638
[7 ] Amorin M,Castedo L,Granja J R. J. Am. Chem. Soc. ,2003,125(10) : 2844—2845
[8 ] Horne W S,Stout C D,Ghadiri M R. J. Am. Chem. Soc. ,2003,125(31) : 9372—9376
[9 ] Scanlon S,Aggeli A. Nano Today,2008,3(3 /4) : 22—30
[10] Brea R J,Vazquez M E,Mosquera M,et al. J. Am. Chem.Soc. ,2007,129(6) : 1653—1657
[11] Janshoff A,Dancil K P S,Steinem C,et al. J. Am. Chem.Soc. ,1998,120(46) : 12108—12116
[12] Bong D T,Ghadiri M R. Angew. Chem. Int. Ed. ,2001,113(11) : 2221—2224
[13] Kim H S,Hartgerink J D,Ghadiri M R. J. Am. Chem. Soc. ,1998,120(18) : 4417—4424
[14] Ghadiri M R,Granja J R,Buehler L K. Nature,1994,369:301—304
[15] Bong D T,Clark T D,Granja J R,et al. Angew. Chem. Int.Ed. ,2001,40(6) : 988—1011
[16] Sánchez-Quesada J,Isler M P,Ghadiri M R. J. Am. Chem.Soc. ,2002,124(34) : 10004—10005
[17] Kienker P K,DeGrado W F,Lear J D. Proc. Natl. Acad. Sci.USA,1994,91: 4859—4863
[18] Clark T D,Buehler L K,Ghadiri M R. J. Am. Chem. Soc. ,1998,120(4) : 651—656
[19] Asthagiri D,Bashford D. Biophys. J. ,2002,82 ( 3 ) : 1176—1189
[20] Roux B,Karplus M. Biophys. J. ,1991,59: 961—981
[21] Roux B,Karplus M. J. Am. Chem. Soc. ,1993,115 ( 8 ) :3250—3262
[22] Hao Y,Pear M R,Busath D D. Biophys. J. ,1997,73 ( 4 ) :1699—1716
[23] Åqvist J,Luzhkov V. Nature,2000,404(6780) : 881—884
[24] Cheng J,Zhu J C,Liu B. Chemical Physics,2007,333: 105—111
[25] Hwang H,Schatz G C,Ratner M A. J. Phys. Chem. B,2006,110(51) : 26448—26460
[26] Dehez F,Tarek M,Chipot C. J. Phys. Chem. B,2007,111(36) : 10633—10635
[27] Delemotte L,Dehez F,Treptow W,et al. J. Phys. Chem. B,2008,112 (18) : 5547—5550
[28] Engels M,Bashford D,Ghadiri M R. J. Am. Chem. Soc. ,1995,117(36) : 9151—9158
[29] Tarek M,Maigret B,Chipot C. Biophys. J. ,2003,85 ( 4 ) :2287—2298
[30] De Groot B L,Grubmüller H. Science,2001,294: 2353—2357
[31] Cho E C,Choi J W,Lee M,et al. Colloids and Surfaces A:Physicochem. Eng. Aspects,2008,313 /314: 95—99
[32] Motesharei K,Ghadiri M R. J. Am. Chem. Soc. ,1997,119(46) : 11306—11312
[33] Horne W S,Wiethoff C M,Cui C,et al. Bioorganic & Medicinal Chemistry,2005,13: 5145—5153
[34] Fernandez-Lopez S,Kim H S,Choi E C,et al. Nature,2001,412(6845) : 452—455
[35] Yan X H,He Q,Wang K W,et al. Angew. Chem. Int. Ed. ,2007,46: 2431—2434
[36] Ranganathan D,Haridas V,Gilardi R,et al. J. Am. Chem.Soc. ,1998,120(42) : 10793—10800
[37] Granja J R,Ghadiri M R. J. Am. Chem. Soc. ,1994,116(23) : 10785—10786
[38] Sánchez-Quesada J,Kim H S,Ghadiri M R. Angew. Chem. ,2001,113(13) : 2571—2574
[39] Khurana E,Nielsen S O,Ensing B,et al. J. Phys. Chem. B,2006,110(38) : 18965—18972
[40] Khurana E,DeVane R H,Kohlmeyer A,et al. Nano Letters,2008,8(11) : 3626—3630
[41] Chipot C,Tarek M. Physical Biology,2006,3: S20—S25
[42] Hwang H,Schatz G C,Ratner M A. J. Phys. Chem. A,2009,113(16) : 4780—4787
[43] Monticelli L,Kandasamy S K, Periole X, et al. J. Chem.Theory Comput. ,2008,4(5) : 819—834
[44] Banerjee I A,Yu L T,Shima M,et al. Advanced Materials,2005,17: 1128—1131
[45] Ashkenasy N,Horne W S,Ghadiri M R. Small,2006,2 (1 ) :99—102
[46] Brea R J,Amorin M,Castedo L,et al. Angew. Chem. Int.Ed. ,2005,44: 5710—5713
[47] Brea R J,Vázquez M E,Mosquera M,et al. J. Am. Chem.Soc. ,2007,129(6) : 1653—1657
[48] Brea R J,Castedo L,Granja J R,et al. PNAS,2007,104(13) : 5291—5294
[49] Couet J,Samuel J D J S,Kopyshev A,et al. Angew. Chem.Int. Ed. ,2005,44: 3297—3301
[50] Lewis J P,Pawley N H,Sankey O F. J. Phys. Chem. B,1997,101(49) : 10576—10583
[51] Carloni P,Andreoni W,Parrinello M. Phys. Rev. Lett. ,1997,79(4) : 761—764
[52] Fukasaku K, Takeda K, Shiraishi K. J. Phys. Soc. Jpn. ,1998,67(11) : 3751—3760
[53] Sanyal B,Eriksson O. Physical Review B,2008,77(15) : art.no. 155407 (1—6)

[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[3] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[4] 刘陈, 李强翔, 张迪, 郦瑜杰, 刘金权, 肖锡林. MCM-41型介孔二氧化硅纳米颗粒的制备及其在DNA生物传感器中的应用[J]. 化学进展, 2021, 33(11): 2085-2102.
[5] 李悦, 李景虹. 基于CRISPR的生物分析化学技术[J]. 化学进展, 2020, 32(1): 5-13.
[6] 宫苗, 王晓英, 王晓宁. 血液肿瘤相关生物标志物的电化学传感检测[J]. 化学进展, 2019, 31(6): 894-905.
[7] 周洋洋, 钟建, 卞晓军, 刘刚, 李亮, 颜娟. 信号放大技术在食品安全检测领域的应用[J]. 化学进展, 2018, 30(2/3): 206-224.
[8] 邓王平, 王丽华, 宋世平, 左小磊. 生物传感器在POCT中的应用研究[J]. 化学进展, 2016, 28(9): 1341-1350.
[9] 戴莹萍, 嵇正平, 王赪胤, 胡效亚, 汪国秀. 微悬臂生物传感器[J]. 化学进展, 2016, 28(5): 697-710.
[10] 董世彪, 焦雄, 赵荣涛, 许金坤, 宋宏彬, 郝荣章. DNA四面体结构纳米材料及其应用[J]. 化学进展, 2015, 27(9): 1191-1197.
[11] 宋英攀, 冯苗, 詹红兵*. 石墨烯的边界效应在电化学生物传感器中的应用[J]. 化学进展, 2013, 25(05): 698-706.
[12] 李晶, 杨晓英*. 新型碳纳米材料——石墨烯及其衍生物在生物传感器中的应用[J]. 化学进展, 2013, 25(0203): 380-396.
[13] 闻艳丽, 林美华, 裴昊, 鲁娜, 樊春海*. 基于电化学技术的microRNA生物传感器[J]. 化学进展, 2012, (9): 1656-1664.
[14] 宋英攀, 冯苗, 詹红兵*. 石墨烯纳米复合材料在电化学生物传感器中的应用[J]. 化学进展, 2012, (9): 1665-1673.
[15] 冯晓苗, 李瑞梅, 杨晓燕, 侯文华. 新型碳纳米材料在电化学中的应用[J]. 化学进展, 2012, 24(11): 2158-2166.
阅读次数
全文


摘要

环肽纳米管的应用研究