English
新闻公告
More
化学进展 2010, Vol. 22 Issue (04): 580-592 前一篇   后一篇

• 综述与评论 •

金属纳米颗粒制备中的还原剂与修饰剂*

王立英;蔡灵剑;沈頔;冯永刚;陈萌**;钱东金   

  1. (上海市分子催化和功能材料重点实验室 复旦大学化学系 复旦大学先进材料实验室 上海 200433)
  • 收稿日期:2009-05-19 修回日期:2009-09-03 出版日期:2010-04-24 发布日期:2010-03-30
  • 通讯作者: 陈萌 E-mail:chenmeng@fudan.edu.cn
  • 基金资助:

    有机胺氧化反应在可控制备金属纳米晶中的应用;上海市重点学科建设经费

Reducing Agents and Capping Agents in the Preparation of Metal Nanoparticles

Wang LiYing; Cai LingJian; Shen Di; Feng YongGang; Chen Meng**; Qian DongJin   

  1. (Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China)
  • Received:2009-05-19 Revised:2009-09-03 Online:2010-04-24 Published:2010-03-30
  • Contact: Chen Meng E-mail:chenmeng@fudan.edu.cn

金属纳米颗粒由于其独特的光学、电学、化学性质以及各种潜在的应用价值,受到不少研究人员的广泛关注。实现金属纳米粒子尺寸、形貌可控,改善粒子分散性和稳定性,提高产率及纯度已成为具有挑战性的研究课题,不断发展和完善金属纳米粒子的合成方法则显得尤为重要。本文总结了目前制备金属纳米材料的几种化学方法:化学试剂还原法、电化学还原法、辐射还原法等,分类介绍了化学试剂还原法中常用的无机、有机还原剂,以及含氮、磷、羧基、巯基小分子有机化合物以及高分子聚合物等修饰剂并重点总结了其还原和修饰机理。

Metal nanoparticles have received much attention due to their intriguing optical,electrical and chemical properties and their potential applications. In recent years, controlling nanoparticles’size and shapes,improving their stability and monodisperisity,increasing their yield and purity are the central challenges, thus development and improvement of the synthetic methods to metal nanoparticles have become more and more important. In this paper, several chemical synthetic routes, including reduction by chemicals, electrochemistry, and irradiation, etc, of metal nanoparticles have been summarized. Especially the inorganic and organic reducing agents, the capping agents including N-, P-, COOH-, SH-containing molecules and polymers, and the mechanisms involved in the chemical preparation are discussed.

Contents
1 Introduction
2 Reducing methods often used in the preparation of metal nanoparticles
2.1 Reducing agents and mechanisms in the reduction by chemicals
2.2 Other reducing methods
3 Capping agents and mechanisms common used in the preparation of metal nanoparticles
3.1 Thiols and their derivatives
3.2 Carboxylic acids and their derivatives
3.3 Amino and amide compounds
3.4 Organic phosphines
3.5 Surfactants
3.6 Polymers
3.7 Cyclodextrin and its derivatives
4 Conclusion

中图分类号: 

()

[1 ] Metraux G S,Mirkin C A. Adv. Mater. ,2005,17: 412—415
[2 ] Mei Y,Lu Y,Polzer F,et al. Chem. Mater. ,2007,19:1062—1069
[3 ] Mei Y,Sharma G,Lu Y,et al. Langmuir,2005,21: 12229—12234
[4 ] Oliveira M M,Castro E G,Canestraro C D,et al. J. Phys.Chem. B,2006,110: 17063—17069
[5 ] Wu H Y,Chu H C,Kuo T J,et al. Chem. Mater. ,2005,17:6447—6451
[6 ] Glavee G N,Klabunde K J,Sorensen C M,et al. Langmuir,1994,10: 4726—4730
[7 ] Zhang W Z,Qiao X L,Chen J G. Chem. Phys. ,2006,330:495—500
[8 ] Nickel U,Castell A Z,Poppl K,et al. Langmuir,2000,16:9087—9091
[9 ] Jana N R, Peng X G. J. Am. Chem. Soc. ,2003,125:14280—14281
[10] Su C H,Wu P L,Yeh C S. J. Phys. Chem. B,2003,107:14240—14243
[11] Zhang S H,Jiang Z Y,Xie Z X,et al. J. Phys. Chem. B,2005,109: 9416—9421
[12] Gu X,Nie C G,Lai Y K,et al. Mater. Chem. Phys. ,2006,96: 217—222
[13] Newman J D S,Blanchard G J. Langmuir,2006,22: 5882—5887
[14] Yu D B,Yam V W W. J. Am. Chem. Soc. ,2004,126:13200—13201
[15] Velikov K P,Zegers G E,van Blaaderen A. Langmuir,2003,19: 1384—1389
[16] Liu Z P,Yang Y,Qian Y T,et al. J. Phys. Chem. B,2003,107: 12658—12661
[17] Zhu H T,Zhang C Y,Yin Y S. J. Cryst. Growth,2004,270:722—728
[18] Pavlyukhina L A,Zaikova T O,Odegova G V,et al. Inorg.Mater. ,1998,34: 109—113
[19] Horvath A,Beck A,Sarkany A,et al. Solid State Ionics,2002,148: 219—225
[20] Sarma T K,Chowdhury D,Paul A,et al. Chem. Commun. ,2002,1048—1049
[21] Sarma T K,Chattopadhyay A. Langmuir,2004,20: 3520—3524
[22] Lee P C,Meisel D. J. Phys. Chem. ,1982,86: 3391—3395
[23] Wang W,Chen X,Efrima S. J. Phys. Chem. B,1999,103:7238—7246
[24] Van Hyning D L,Zukoski C F. J. Phys. Chem. B,1998,14:7034—7036
[25] Brust M,Walker M,Bethell D,et al. Chem. Commun. ,1994,801—802
[26] Yang J,Zhang Q B,Lee J Y,et al. J. Colloid Interf. Sci. ,2007,308: 157—161
[27] Van Hyning D L,Zukoski C F. Langmuir,1998,14: 7034—7046
[28] Groschel L,Haidar R,Beyer A,et al. Catal. Lett. ,2004,95:67—75
[29] Groschel L,Haidar R,Beyer A,et al. Ind. Eng. Chem. Res. ,2005,44: 9064—9070
[30] Chernyshov D M,Bronstein L M,Borner H, et al. Chem.Mater. ,2000,12: 114—121
[31] Chang Y,Lye M L,Zeng H C. Langmuir,2005,21: 3746—3748
[32] Underhill R S,Liu G J. Chem. Mater. ,2000,12: 3633—3641
[33] Xiong Y J,Xie Y,Wu C Z,et al. Adv. Mater. ,2003,15:405—408
[34] Evanoff D D,Chumanov G. J. Phys. Chem. B,2004,108:13948—13956
[35] 顾大明(Gu D M) ,孙沫莹( Sun M Y) . 哈尔滨工业大学学报( Journal of Harbin Institute of Technology) ,2003,35: 1009—1011
[36] Chen M,Falkner J,Guo W H,et al. J. Colloid Interf. Sci. ,2005,287: 146—151
[37] Chen M,Feng Y G,Wang L Y,et al. Colloids Surf. A,2006,281: 119—124
[38] Xu R,Xie T,Zhao Y G,et al. Crystal Growth & Design,2007,7: 1904—1911
[39] Aleandri L E,Bogdanovic B,Durr C,et al. Adv. Mater. ,1996,8: 600—604
[40] Caswell K K,Bender C M,Murphy C J. Nano Letters,2003,3:667—669
[41] Pong B K,Elim H I,Chong J,Xlim Ji W,Trout B L,Lee J Y.J. Phys. Chem. C,2007,111: 6281—6287
[42] Zhou G J,Lu M K,Yang Z S,et al. J. Cryst. Growth,2006,289: 255—259
[43] Hu J Q,Chen Q,Xie Z X,et al. Adv. Funct. Mater. ,2004,14: 183—189
[44] Liu Y L,Male K B,Luong J H T,et al. Chem. Mater. ,2003,15: 4172—4180
[45] Jana N R,Gearheart L,Murphy C J. J. Phys. Chem. B,2001,105: 4065—4067
[46] He S T,Yao J N,Jiang P,et al. Langmuir,2001,17: 1571—1575
[47] Chen M,Feng Y G,Wang X,et al. Langmuir,2007,23:5296—5304
[48] Graf C,van Blaaderen A. Langmuir. ,2002,18: 524—534
[49] Nakao H,Shiigi H,Yamamoto Y,et al. Nano Letters,2003,3:1391—1394
[50] Chaki N K, Sudrik S G, Sonawane H R, et al. Chem.Commun. ,2002: 76—77
[51] Yamamoto M,Nakamoto M. J. Mater. Chem. , 2003, 13:2064—2065
[52] Bhargava S K,Booth J M,Agrawal S,et al. Langmuir,2005,21: 5949—5956
[53] Bright R M,Musick M D,Natan M J. Langmuir,1998,14:5695—5701
[54] Lee N S,Sheng R S,Morris M D,Schopfer L M. J. Am.Chem. Soc. ,1986,108: 6179—6183
[55] Sarkar A,Kapoor S,Mukherjee T. J. Phys. Chem. B,2005,109: 7698—7704
[56] Chen M,Wang L Y,Han J T,et al. J. Phys. Chem. B,2006,110: 11224—11231
[57] Yu D B,Yam V W W. J. Phys. Chem. B,2005,109: 5497—5503
[58] Raveendran P,Fu J,Wallen S L. J. Am. Chem. Soc. ,2003,125: 13940—13941
[59] Sun Y G,Yin Y D,Mayers B T,et al. Chem. Mater. ,2002,14: 4736—4745
[60] Swami A,Selvakannan P R,Pasricha R,et al. J. Phys. Chem.B,2004,108: 19269—19275
[61] Yu Y Y,Chang S S,Lee C L,Wang C R C. J. Phys. Chem.B,1997,101: 6661—6664
[62] Liu G,Cai W,Liang C. Crystal Growth & Design,2008,8:2748—2752
[63] Jin R C,Cao Y C,Hao E C,et al. Nature,2003,425: 487—490
[64] Jin R C,Cao Y W,Mirkin C A,et al. Science,2001,294:1901—1903
[65] Zhu Y J,Hu X L. Chem. Lett. ,2003,32: 732—733
[66] Zhu Y J,Hu X L. Chem. Lett. ,2003,32: 1140—1141
[67] Zhu Y J,Hu X L. Chem. Lett. ,2004,33: 760—761
[68] Zhu Y J,Hu X L. Mater. Lett. ,2004,58: 1517—1519
[69] Zhu Y J,Wang W W,Qi R J,et al. Angew. Chem. Int. Ed. ,2004,43: 1410—1414
[70] Ah C S,Han H S,Kim K,et al. J. Phys. Chem. B,2000,104: 8153—8159
[71] Shon Y S,Cutler E. Langmuir,2004,20: 6626—6630
[72] Li X L,Zhang J H,Xu W Q,et al. Langmuir,2003,19:4285—4290
[73] Cliffel D E,Zamborini F P,Gross S M,et al. Langmuir,2000,16: 9699—9702
[74] Mandal S,Gole A,Lala N,et al. Langmuir,2001,17: 6262—6268
[75] Tan Y W,Jiang L,Li Y F,et al. J. Phys. Chem. B,2002,106: 3131—3138
[76] Tong M C,Chen W,Sun J,et al. J. Phys. Chem. B,2006,110: 19238—19242
[77] Yang N,Aoki K. J. Phys. Chem. B,2005,109: 23911—23917
[78] De la Presa P,Multigner M,de la Venta J,et al. J. Appl.Phys. ,2006,100: 123915—123916
[79] Mott D,Galkoski J,Wang L Y,Luo J,Zhong C J. Langmuir,2007,23: 5740—5745
[80] Wang X,Zhuang J,Li Y D,et al. Inorg. Chem. ,2008,47:543—547
[81] Leff D V,Brandt L,Heath J R. Langmuir,1996,12: 4723—4730
[82] Subramaniam C,Tom R T,Pradeep T. Journal of Nanoparticle Research,2005,7: 209—217
[83] Selvakannan P,Mandal S,Phadtare S,et al. J. Colloid Interf.Sci. ,2004,269: 97—102
[84] Aslam M,Fu L,Su M,et al. J. Mater. Chem. ,2004,14:1795—1797
[85] Thomas K G,Zajicek J,Kamat P V. Langmuir,2002,18:3722—3727
[86] Thomas K G,Kamat P V. J. Am. Chem. Soc. ,2000,122:2655—2656
[87] Iwamoto M,Kuroda K,Zaporojtchenko V,et al. Eur. Phys. J.D,2003,24: 365—367
[88] Gandubert V J,Lennox R B. Langmuir,2005,21: 6532—6539
[89] Schmid G. Chem. Rev. ,1992,92: 1709—1727
[90] Harnack O,Ford W E,Yasuda A,et al. Nano Letters,2002,2: 919—923
[91] Son S U,Jang Y,Yoon K Y,et al. Nano Letters,2004,4:1147—1151
[92] Bagwe R P,Khilar K C. Langmuir,2000,16: 905—910
[93] Liz-Marzan L M,Lado-Tourino I. Langmuir,1996,12: 3585—3589
[94] Andre P,Charra F,Chollet P A,et al. Adv. Mater. ,2002,14: 601—603
[95] 杨强(Yang Q) ,王立(Wang L) ,向卫东(Xiang W D) 等. 化学进展( Progress in Chemistry) ,2006,18: 290—297
[96] Liu Y C, Chuang T C. J. Phys. Chem. B, 2003, 107:12383—12386
[97] Zhang Z P,Han M Y. J. Mater. Chem. ,2003,13: 641—643
[98] Zhu Y J,Qian Y T,Li X J,et al. Chem. Commun. ,1997,1081—1082
[99] Sun Y A,Xia Y N. Adv. Mater. ,2003,15: 695—699
[100] Sun Y G,Xia Y N. Science,2002,298: 2176—2179
[101] Sun Y G,Xia Y N. Advanced Materials,2002,14: 833—837
[102] Huang H H,Ni X P,Loy G L,et al. Langmuir,1996,12:909—912
[103] Umar A A,Oyama M. Crystal Growth & Design,2006,6:818—821
[104] Dawn A,Mukherjee P, Nandi A K. Langmuir,2007,23:5231—5237
[105] Youk J H,Park M K,Locklin J,et al. Langmuir,2002,18:2455—2458
[106] Zhang D B,Qi L M,Ma J M,et al. Chem. Mater. ,2001,13:2753—2755
[107] Chen S,Guo C,Hu G H,et al. Langmuir,2006,22: 9704—9711
[108] Qiao R,Zhang X L,Qiu R,et al. J. Phys. Chem. C,2007,111: 2426—2429
[109] Akagi T,Higashi M,Akashi M, et al. Biomacromolecules,2006,7: 297—303
[110] Samoilova N, Kurskaya E, Krayukhina M, et al. J. Phys.Chem. B,2009,113: 3395—3403
[111] Manna A,Imae T,Aoi K,et al. Chem. Mater. ,2001,13:1674—1681
[112] Sun X P,Dong S J,Wang E K. Macromolecules,2004,37:7105—7108
[113] Esumi K,Suzuki A,Yamahira A,et al. Langmuir,2000,16:2604—2608
[114] Zhang Y W,Peng H S,Huang W,et al. J. Phys. Chem. C,2008,112: 2330—2336
[115] Kuo P L,Chen W F. J. Phys. Chem. B,2003,107: 11267—11272
[116] Ding X Y,Xu R L,Liu H W,et al. Crystal Growth & Design,2008,8: 2982—2985
[117] Vigneshwaran N,Nachane R P,Balasubramanya R H,et al.Carbohydr. Res. ,2006,341: 2012—2018
[118] He F,Zhao D Y. Environ. Sci. Technol. ,2005,39: 3314—3320
[119] Gao J P,Fu J,Lin C K,et al. Langmuir,2004,20: 9775—9779
[120] Connors K A. Chem. Rev. ,1997,97: 1325—1357
[121] Liu J,Alvarez J,Ong W,et al. Nano Letters,2001,1: 57—60
[122] Liu J,Alvarez J,Ong W et al. J. Am. Chem. Soc. ,2001,123: 11148—11154
[123] Liu J,Alvarez J,Kaifer A E. Adv. Mater. ,2000,12: 1381—1383
[124] Alvarez J,Liu J,Roman E,et al. Chem. Commun. ,2000,1151—1152
[125] Liu J,Ong W,Roman E,et al. Langmuir,2000,16: 3000—3002
[126] Carofiglio T, Fornasier R, Jicsinszky L, et al. Tetrahedron Lett. ,2001,42: 5241—5244
[127] Huang Y J,Di L,Li J H. Chem. Phys. Lett. ,2004,389:14—18

[1] 张丹丹, 吴琪, 曲广波, 史建波, 江桂斌. 单细胞水生生物金属纳米颗粒的定量分析[J]. 化学进展, 2022, 34(11): 2331-2339.
[2] 焦成鹏, 黄自力, 张海军, 张少伟. 置换反应制备双金属纳米催化剂[J]. 化学进展, 2015, 27(5): 472-481.
[3] 崔淑媛, 刘军, 吴伟. 金属纳米颗粒导电墨水的制备及其在印刷电子方面的应用[J]. 化学进展, 2015, 27(10): 1509-1522.
[4] 李阳, 牛军峰, 张驰, 王正早, 郑梦源, 商恩香. 水中金属纳米颗粒对细菌的光致毒性机理[J]. 化学进展, 2014, 26(0203): 436-449.
[5] 王金业, 宋晨, 徐景坤, 丁宝全. 利用DNA折纸术构建功能纳米材料[J]. 化学进展, 2012, (10): 1936-1945.
[6] 陶凯, 王继乾*, 夏道宏, 徐海, 吕建仁, 山红红. 多肽在贵金属纳米粒子制备中的应用[J]. 化学进展, 2012, 24(07): 1294-1308.
[7] 徐峰,彭长兰,吕宏霞. 多糖在金属纳米材料合成中的应用[J]. 化学进展, 2008, 20(0203): 273-279.