English
新闻公告
More
化学进展 2010, Vol. 22 Issue (04): 573-579 前一篇   后一篇

• 综述与评论 •

多孔材料负载金催化剂的制备与应用*

宋海岩;李钢**;王祥生   

  1. (大连理工大学催化化学与工程系 精细化工国家重点实验室, 大连 116012)
  • 收稿日期:2009-04-21 修回日期:2009-05-12 出版日期:2010-04-24 发布日期:2010-03-30
  • 通讯作者: 李钢 E-mail:liganghg@dlut.edu.cn
  • 基金资助:

    高等学校全国优秀博士学位论文作者专项资金;新世纪优秀人才支持计划;国家自然科学基金

Preparation and Application of Porous Material Supported Gold Catalysts

Song Haiyan; Li Gang**; Wang Xiangsheng   

  1. (State Key Laboratory of Fine Chemicals, Department of Catalytical Chemistry and Engineering, Dalian University of Technology, Dalian 116012, China)
  • Received:2009-04-21 Revised:2009-05-12 Online:2010-04-24 Published:2010-03-30
  • Contact: Li Gang E-mail:liganghg@dlut.edu.cn
  • Supported by:

    ;National Natural Science Foundation of China

本文综述了微孔材料和介孔材料负载型金催化剂的制备、表征与应用研究的最新进展,从多孔载体的选择(氧化物、微孔分子筛、介孔氧化物、介孔分子筛和介孔碳材料)、金的最新负载方法(沉积-沉淀法、溶胶-凝胶法、原位法/一步法和化学气相沉积法)与表征及其催化性能(一氧化碳低温氧化、氢气/氧气直接合成过氧化氢、直接合成环氧丙烷和有机物的选择性氧化)等方面详尽地评述了微孔材料和介孔材料负载型金催化剂研究概况。同时,提出了多孔材料负载金催化剂存在的一些问题,并展望了其研究和发展的方向。

This review outlines recent development of preparation, characterization and application of microporous material and mesoporous material supported gold catalysts. The selection of the microporous supports or mesoporous supports (unmodified oxides, microporous molecular sieves, mesoporous oxides, mesoporous molecular sieves and mesoporous carbon materials), the latest preparation methods of porous material supported gold catalysts (deposition-precipitation, sol-gel method, in situ/one-step method and chemical vapor deposition) and characterizations, as well as catalytic performance (carbon monoxide low-temperature oxidation, direct synthesis of hydrogen peroxide from hydrogen and oxygen, direct propylene epoxidation in the presence of hydrogen and oxygen and selective oxidation of organic compounds) are summarized. Meanwhile, the problem, as well as the research and development direction of porous material supported gold catalysts is presented.

Contents
1 Introduction
2 Preparation of porous material supported gold catalysts
2.1 Selection of support
2.2 Preparation methods
3 Catalytic performance and application of supported gold catalysts
3.1 CO low-temperature oxidation
3.2 Direct propylene epoxidation in the presence of H2/O2
3.3 Direct synthesis of H2O2 from H2/O2
3.4 Selective oxidation of organic compounds
4 Conclusion

中图分类号: 

()

[1 ] Iizuka Y,Tode T,Haruta M,et al. J. Catal. ,1999,187:50—58
[2 ] Daté M,Haruta M. J. Catal. ,2001,201: 221—224
[3 ] Boccuzzi F,Chiorino A,Haruta M,et al. J. Catal. ,2001,202: 256—267
[4 ] Okumura M,Coronado J M,Haruta M,et al. J. Catal. ,2001,203: 168—174
[5 ] Landon P,Collier P J,Hutchings G J,et al. Chem. Commun. ,2002,2058—2059
[6 ] Li G,Edwards J,Hutchings G J, et al. Catal. Commun. ,2007,8: 247—250
[7 ] Li G,Edwards J,Hutchings G J,et al. Catal. Today,2006,114: 369—371
[8 ] Li G,Edwards J,Hutchings G J,et al. Catal. Today,2007,122: 361—364
[9 ] Abad A,Concepción P,Corma A,et al. Angew. Chem. Int.Ed. ,2005,44: 4066—4069
[10] 徐新(Xu X) ,罗国华( Luo G H) ,赵如松( Zhao R S) . 石油化工( Technology Petrochemical) ,2005,34: 898—902
[11] Moreau F,Bond G C. Catal. Today,2007,122: 215—221
[12] Olea M,Iwasawa Y. Appl. Catal. A: General,2004,275:35—42
[13] Bravo-Suárez J J, Bando K K, Oyama S T, et al. Chem.Commun. ,2008,3272—3274
[14] Lu J,Zhang X,Oyama S T,et al. Catal. Today,2009,147:186—195
[15] Bravo-Suárez J J,Bando K K,Oyama S T,et al. J. Catal. ,2008,257: 32—42
[16] Sierraalta A,Alejos P,Ehrmann E,et al. J. Mol. Catal. A:Chem. ,2009,301: 61—66
[17] Salama T M,Ohnishi R,Shido T,et al. J. Catal. ,1996,162:169—178
[18] Mohamed M M,Mekkawy I. J. Phys. Chem. Solids,2003,64:299—306
[19] Hosseini M,Siffert S,Tidahy H L,et al. Catal. Today,2007,122: 391—396
[20] Sreethawong T, Yoshikawa S. Catal. Commun. , 2005, 6:661—668
[21] Fu G,Cai W,Gan Y,et al. Chem. Phys. Lett. ,2004,385:15—19
[22] Chen W,Zhang J,Cai W. Scripta Mater. ,2003,48: 1061—1066
[23] Seker E,Gulari E. Appl. Catal. A: General,2002,232:203—217
[24] Yin D,Qin L,Liu J,et al. J. Mol. Catal. A: Chem. ,2005,240: 40—48
[25] Li J,Zhan Y,Zheng Q,et al. Acta Phys. Chim. Sin. ,2008,24: 932—938
[26] Li J,Zhan Y,Zheng Q,et al. Chin. J. Catal. ,2008,29:346—350
[27] Campo B,Volpe M,Ivanova S,et al. J. Catal. ,2006,242:162—171
[28] Campo B,Petit C,Volpe M A. J. Catal. ,2008,254: 71—78
[29] Yuan Z Y,Idakiev V,Vantomme A,et al. Catal. Today,2008,131: 203—210
[30] Zheng S,Gao L. Mater. Chem. Phys. ,2002,78: 512—517
[31] Sobczak I,Kusior A,Grams J,et al. J. Catal. ,2007,245:259—266
[32] Sobczak I,Kusior A,Ziolek M. Catal. Today,2008,137:203—208
[33] Sobczak I,Kieronczyk N,Trejda M,et al. Catal. Today,2008,139: 188—195
[34] Uphade B S,Okumura M,Haruta M,et al. Appl. Catal. A:General,2000,190: 43—50
[35] Uphade B S,Yamada Y,Haruta M,et al. Appl. Catal. A:General,2001,215: 137—148
[36] Sinha A K, Seelan S, Haruta M, et al. Appl. Catal. A:General,2003,240: 243—252
[37] Chatterjee M, Ikushima Y,Hakuta Y, et al. Adv. Synth.Catal. ,2006,348: 1580—1590
[38] Lee B,Zhu H,Dai S, et al. Micropor. Mesopor. Mater. ,2004,70: 71—80
[39] Overbury S H,Ortiz-Soto L,Dai S,et al. Catal. Lett. ,2004,95: 99—106
[40] Song H,Li G,Wang X,et al. Prepr. Pap. Am. Chem. Soc. ,Div. Petr. Chem. ,2007,52: 297—298
[41] Song H,Li G,Wang X. Micropor. Mesopor. Mater. ,2009,120: 346—350
[42] Liu P H,Chang Y P,Chao K J,et al. Mat. Sci. Eng. C,2006,26: 1017—1022
[43] Jin Y,Wang P,Yu N,et al. Micropor. Mesopor. Mater. ,2008,111: 569—576
[44] Sacaliuc E,Beale A M,Weckhuysen B M,et al. J. Catal. ,2007,248: 235—248
[45] Ruszel M,Grzybowska B,aniecki M,et al. Catal. Commun. ,2007,8: 1284—1286
[46] Hutchings G J,Landon P,Xu Y J,et al. Top. Catal. ,2006,38: 223—230
[47] Tello A,Cárdenas G,Segura R A,et al. Carbon,2008,46:884—889
[48] Fási A,Hernádi K,Pálinkó I,et al. Catal. Lett. ,2006,87:343—348
[49] Song H Y,Li G,Wang X S. Catal. Today,2010,149: 127—131
[50] Uphade B S,Akita T,Haruta M,et al. J. Catal. ,2002,209:331—340
[51] Sinha A K,Seelan S,Haruta M,et al. Angew. Chem. Int.Ed. ,2004,43: 1546—1548
[52] Okumura M,Tsubota S,Haruta M. J. Mol. Catal. A: Chem. ,2003,199: 73—84
[53] Haruta M,Kobayashi T,Samo H,et al. Chem. Lett. ,1987,405—408
[54] 鲁继青( Lu J Q) ,罗孟飞( Luo M F) ,辛勤(Xin Q) . 化工进展( Chemical Industry and Engineering Progress) ,2007,26:306—309
[55] Bandyopadhyay M, Korsak O, Gies H, et al. Micropor.Mesopor. Mater. ,2006,89: 158—163
[56] Beck A,Horváth A,Guczi L,et al. Catal. Today,2008,139:180—187
[57] Liu X,Wang A,Zhang T,et al. Chem. Commun. ,2008,3187—3189
[58] Hernandez J A,Gómez S,Zepeda T A,et al. Appl. Catal. B:Environ. ,2009,89: 128—136
[59] Hayashi T,Tanaka K,Haruta M. J. Catal. ,1998,178: 566—575
[60] Nijhuis T A,Huizinga B J,Moulijn J A,et al. Ind. Eng.Chem. Res. ,1999,38: 884—891
[61] Chowdhury B,Bravo-Suárez J J,Haruta M,et al. J. Phys.Chem. B,2006,110: 22995—22999
[62] Lu J,Zhang X,Oyama S T,et al. Catal. Today,2007,123:189—197
[63] 王东辉(Wang D H) ,程代云( Cheng D Y) ,郝郑平( Hao Z P) 等. 纳米金催化剂及其应用( Gold Nanocatalyst and Its Application) . 北京: 国防工业出版社( Beijing: National Defense Industry Press) ,2006. 205—206
[64] Lunsford J H. J. Catal. ,2003,216: 455—460
[65] Choudhary V R,Jana P. Appl. Catal. A: General,2008,335:95—102
[66] Choudhary V R,Samanta C. J. Catal. ,2006,238: 28—38
[67] Ishihara T, Ohura Y, Yoshida S, et al. Appl. Catal. A:General,2005,291: 215—221
[68] Edwards J K,Solsona B E,Hutchings G J,et al. J. Catal. ,2005,236: 69—79
[69] Ma S,Li G,Wang X S. Chem. Lett. ,2006,35: 428—429
[70] Porta F,Prati L. J. Catal. ,2004,224: 397—403
[71] Carrettin S, Mcmorn P, Hutchings G J, et al. Chem.Commun. ,2002,696—697
[72] Jia M,Shen Y,Li C,et al. Catal. Lett. ,2005,99: 235—239
[73] Andreeva D,Tabakova T,Idakiev V,et al. Gold Bull. ,1998,31: 105—106
[74] Idakiev V,Ilieva L,Su B L,et al. Appl. Catal. A: General,2003,243: 25—39
[75] Andreeva D,Nedyalkova R,Ilieva L,et al. Appl. Catal. A:General,2003,246: 29—38
[76] Munteanu G,Ilieva L,Andreeva D,et al. Appl. Catal. A:General,2004,277: 31—40
[77] Si X,Chen S,He M Y,et al. Catal. Lett. ,2008,122: 321—324

[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[3] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[4] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[5] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[6] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[7] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[8] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[9] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[10] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[11] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[12] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[13] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[14] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[15] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.