English
新闻公告
More
化学进展 2010, Vol. 22 Issue (04): 557-572 前一篇   后一篇

• 特约稿 •

亚铜催化的碳杂偶联反应机理*

于海珠;傅尧**;白小宇;郭庆祥**   

  1. (中国科学技术大学化学系 合肥 230026)
  • 收稿日期:2009-11-03 修回日期:2009-12-08 出版日期:2010-04-24 发布日期:2010-03-30
  • 通讯作者: 傅尧;郭庆祥 E-mail:fuyao@ustc.edu.cn; qxguo@ustc.edu.cn
  • 基金资助:

    亚铜催化的杂环化合物碳杂偶联反应机理的理论和实验研究

Mechanistic Studies on Cu(I) Catalyzed C-X Cross Coupling Reactions

Yu Haizhu; Fu Yao**; Bai Xiaoyu; Guo Qingxiang**   

  1. (Department of Chemistry, University of Science and Technology of China,  Hefei 230026, China)
  • Received:2009-11-03 Revised:2009-12-08 Online:2010-04-24 Published:2010-03-30
  • Contact: Fu Yao;Guo Qingxiang E-mail:fuyao@ustc.edu.cn; qxguo@ustc.edu.cn

近年来,亚铜催化的碳杂偶联反应以其高效、低成本和易制备等优点被广泛研究并应用于工业生产,有机合成及生物活性分子的制备中。目前对于这些碳杂偶联反应机理的探究仍然处于探索性阶段。本文主要评述了近年来亚铜催化的碳杂偶联反应机理的研究进展。重点综述近年来研究相对较多,对机理认识较为完善的碳-氮偶联(特别是酰胺类化合物的芳基化过程),碳氧偶联以及碳硼偶联(不饱和有机化合物的硼化、二硼化反应)机理等方面的进展。最后,基于目前这些机理研究工作的现状,展望了未来机理探究的主要方向。

Cu(I) catalyzed C-X (X=N, O, S, B…) cross coupling reactions have recently attracted much attention for their great importance in organic synthesis, industrial and biology chemistry. Despite the extensive studies and applications on C-X cross coupling reactions, the mechanisms of these reactions are less well studied. In this work, we mainly review the recent progresses in mechanistic studies of the C-X cross coupling reactions, especially the Cu(I) catalyzed C-N, C-O cross coupling reactions and the borylation/diborylation reactions of unsaturated organic substrates which are systematically studied recently. Based on the review of the current status of mechanistic studies, we provid some insights and discussion on existing problems and future prospects at last.

Contents
1 Introduction
2 Mechanistic studies on Cu(I) catalyzed C-N cross coupling reactions
3 Mechanistic studies on Cu(I) catalyzed C-O cross coupling reactions
4 mechanistic studies on Cu(I) catalyzed borylation and diborylation (C-B cross coupling) reactions
5 Prospects

中图分类号: 

()

[1 ] Eicher T, Hauptmann S. The Chemistry of Heterocycles-Structure, Reactions, Synthesis and Application,Weinheim:Wiley-VCH,2003
[2 ] De Meijere A, Diederich F. Metal-Catalyzed Cross-Coupling Reactions (2nd ed) . Weinheim: Wiley-VCH,2004
[3 ] Jiang L, Buchwald S L B. Metal-Catalyzed Cross-Coupling Reactions, 2nd ed. ( Eds. Meijere A, Diederich F ) ,Weinheim: Wiley-VCH,2004
[4 ] Monnier F,Taillefer M. Angew. Chem. Int. Ed. ,2009,48:6954—6971
[5 ] Zhou Y,Zhao J,Liu L. Angew. Chem. Int. Ed. ,2009,48:7126—7128
[6 ] Meldal M,Torne C W. Chem. Rev. ,2008,108: 2952—3015
[7 ] Deng W,Liu L,Guo Q X. Chin. J. Org. Chem. ,2004,24:150—165
[8 ] Ley S V,Thomas A W. Angew. Chem. Int. Ed. ,2003,42:5400—5449
[9 ] Beletskaya I P,Cheprakov A V. Coord. Chem. Rev. ,2004,248: 2337—2364
[10] Lindley J. Tetrahedron,1984,40: 1433—1456
[11] Jiang L, Buchwald S L. Metal-Catalyzed Cross-Coupling Reactions (2nd ed) . Weinheim: Wiley-VCH,2004
[12] Strieter E R,Bhayana B,Buchwald S L. J. Am. Chem. Soc. ,2009,131: 78—88
[13] Ma D,Zhang Y,Yao J,Wu S,Tao F. J. Am. Chem. Soc. ,1998,120: 12459—12467
[14] Ullmann F. Chem. Ber. ,1901,34: 2174—2185
[15] Ullmann F,Sponagel P. Chem. Ber. ,1905,38: 2211—2212
[16] Goldberg I. Chem. Ber. ,1906,39: 1691—1692
[17] Weston P W,Adkins H. J. Am. Chem. Soc. ,1928,50:859—866
[18] Weingarten H. J. Org. Chem. ,1964,29: 3624—3626
[19] Kondratov S A, Shein S M. Zh. Org. Khim. ,1979,15:2160—2162
[20] Paine A J. J. Am. Chem. Soc. ,1987,109: 1496—1502
[21] Aalten H L,van Koten G,Grove D M,Kuilman T,Piekstra O G,Hulshof L A,Sheldon R A. Tetrahedron,1989,45: 5565—5578
[22] Cohen T,Wood J,Dietz A G. Tetrahedron Lett. ,1974,15:3555—3558
[23] Paine A J. J. Am. Chem. Soc. ,1987,109: 1496—1502
[24] Lindley J. Tetrahedron,1984,40: 1433—1456
[25] Cristau H J,Cellier P P,Spindler J F,Taillefer M. Chem. Eur.J. ,2004,10: 5607—5622
[26] Burnett J F,Zahler R E. Chem. Rev. ,1951,49: 273—412
[27] Rossi R A,de Rossi R H. Aromatic Substitution by the SRN 1 Mechanism ( Ed. Caserio M C ) . ACS Monograph 178,Wahsington: American Chemical Society,1983
[28] Quali A,Taillefer M,Spindler J F,Jutand A. Organometallics,2007,26: 65—74
[29] Kiyomori A,Marcoux J F,Buchwald S L. Tetrahedron Lett. ,1999,40: 2657—2660
[30] Strieter E R,Blackmond D G,Buchwald S L. J. Am. Chem.Soc. ,2005,127: 4120—4121
[31] Zhang S L,Liu L,Fu Y,Guo Q X. Organometallics,2007,26:4546—4554
[32] Klapars A,Huang X,Buchwald S L. J. Am. Chem. Soc. ,2002,124: 7421—7428
[33] Tye J W,Weng Z Q,Johns A M,Incarvito C D,Hartwig J F.J. Am. Chem. Soc. ,2008,130: 9971—9983
[34] Strieter E R,Bhayana B,Buchwald S L. J. Am. Chem. Soc. ,2009,131: 78—88
[35] Arai S,Hida M,Yamagishi T. Bull. Chem. Soc. Jpn. ,1978,51: 277—282
[36] Kaddouri H,Vicent V,Quali A,Quazzani F, Taillefer M.Angew. Chem. Int. Ed. ,2009,48: 333—336
[37] Altman R A,Hyde A M,Huang X H,Buchwald S L. J. Am.Chem. Soc. ,2008,130: 9613—9620
[38] Strieter E R. Mechanistic Studies on Metal-Catalyzed Carbon-Nitrogen Bond Forming Reactions. Doctoral Dissertation of Massachusetts Institute of Technology,Cambridge,MA, June2005
[39] Zhang S L,Liu L,Fu Y,Guo Q X. Theochem. ,2005,757:37—46
[40] Yang X D,Li L,Zhang H B. Helv. Chim. Acta,2008,91:1435—1442
[41] Yang C T,Fu Y,Huang Y B,Yi J,Guo Q X,Liu L. Angew.Chem. Int. Ed. ,2009,48: 7398—7361
[42] Wang P Y,Li L C,Yang C,Li Y R. J. Phys. Chem. A,2008,112: 435—440
[43] Cai Q,Zou B,Ma D. Angew. Chem. Int. Ed. ,2006,45:1276—1279
[44] Nicolaou K C, Natarajan S, Li H, Jain N F, Hughes R,Solomon M E,Ramanjulu J M,Boddy C N C,Takayanagi M.Angew. Chem. Int. Ed. ,1998,37: 2708—2714
[45] Nicolaou K C,Boddy C N C,Natarajan S,Yue T Y,Li H,Brse S,Ramanjulu J M. J. Am. Chem. Soc. ,1997,119:3421—3422
[46] Nicolaou K C, Natarajan S, Li H, Jain N F, Hughes R,Solomon M E,Ramanjulu J M,Boddy C N C,Takayanagi M.Angew. Chem. ,1998,110: 2872—2878
[47] Marcoux J F,Doye S,Buchwald S L. J. Am. Chem. Soc. ,1997,119: 10539—10540
[48] Mayoral J A,Rodríguez-Rodríguez S,Salvatella L. Chem. Eur.J. ,2008,14: 9274—9285
[49] Pearson A J,Chen Y S,Han G R,Hsu S Y,Ray T. J. Chem.Soc. Perkin Trans. 1,1985,267—270
[50] Kochi J K. Tetrahedron,1962,18: 483—497
[51] Denney D B,Denney D Z,Feig G. Tetrahedron Lett. ,1959,19—23
[52] Saphier M,Masarwa A, Cohen H, Meyerstein D. Eur. J.Inorg. Chem. ,2002,1226—1234
[53] Gibson D H. Chem. Rev. ,1996,96: 2063—2096
[54] Sakakura T,Choi J C,Yasuda H. Chem. Rev. ,2007,107:2365—2387
[55] 董冬吟(Dong D Y) ,杨琍苹(Yang L P) ,胡文浩(Hu W H) .化学进展( Progress in Chemistry) ,2009,21: 1217—1228
[56] Guo C H,Wu H S,Zhang X M,Song J Y,Zhang X. J. Phys.Chem. A,2009,113: 6710— 6723
[57] Tsuda T, Chujo Y, Saegusa T. J. Chem. Soc. Chem.Commun. ,1976,415—416
[58] Shang R,Fu Y,Wang Y,Xu Q,Yu H,Liu L. Angew. Chem.Int. Ed. ,2009,48: 9350—9354
[59] Cairncross A,Sheppard W A. J. Am. Chem. Soc. ,1968,90:2186—2187
[60] Sheppard W A. J. Am. Chem. Soc. ,1970,92: 5419—5422
[61] Burgess K,Ohlmeyer M J. Chem. Rev. ,1991,91: 1179—1191
[62] Fu G C,Evans D A,Muci A R. In Advances in Catalytic Processes ( Ed. Doyle M P) . Greenwich: JAI Press,1995
[63] Beletskaya I,Pelter A. Tetrahedron,1997,53: 4957—5026
[64] Ishiyama T,Miyaura N. Chem. Rev. ,2004,3: 271—280
[65] Marder T B,Norman N C. Top. Catal. ,1999,5: 63—73
[66] Laitar D S,Tsui E Y,Sadighi J P. J. Am. Chem. Soc. ,2006,128: 11036—11037
[67] Zhao H T,Dang L,Marder T B,Lin Z Y. J. Am. Chem.Soc. ,2008,130: 5586—5594
[68] Laitar D S,Sadighi J P. Organometallics,2006,25: 2405—2408
[69] Dang L, Zhao H T, Lin Z Y. Organometallics,2007,26:2824—2832
[70] Ito H,Yamanaka H,Tateiwa J,Hosomi A. Tetrahedron Lett. ,2000,41: 6821—6825
[71] Ali H A,Goldberg I,Srebnik M. Organometallics,2001,20:3962—3965
[72] Mun S,Lee J,Yun J. Org. Lett. ,2006,8: 4887—4889
[73] Dang L,Lin Z Y. Organometallics,2008,27: 4443—4454
[74] Mun S,Lee J,Yun J. Org. Lett. ,2006,8: 4887—4889
[75] Kleeberg C,Dang L,Lin Z Y,Marder T B. Angew. Chem. Int.Ed. ,2009,48: 5350—5352
[76] Laitar D S,Müller P,Sadighi J P. J. Am. Chem. Soc. ,2005,127: 17196—17197
[77] Mankad N P,Laitar D S,Sadighi J P. Organometallics,2004,23: 3369 — 3371
[78] Ohishi T,Nishiura M,Hou Z. Angew. Chem. ,2008,120:5876—5879
[79] Lillo V,Fructos M R,Ramírez J,Díaz Requejo M M,Pérez P J,Fernández E. Chem. Eur. J. ,2007,13: 2614—2621
[80] Dang L, Zhao H T, Lin Z Y. Organometallics,2008,27:1178—1186

[1] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[2] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[3] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[4] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[5] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[6] 吴飞, 任伟, 程成, 王艳, 林恒, 张晖. 基于生物炭的高级氧化技术降解水中有机污染物[J]. 化学进展, 2022, 34(4): 992-1010.
[7] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[8] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[9] 何闯, 鄂爽, 闫鸿浩, 李晓杰. 碳点在润滑领域中的应用[J]. 化学进展, 2022, 34(2): 356-369.
[10] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[11] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714.
[12] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[13] 白文己, 石宇冰, 母伟花, 李江平, 于嘉玮. Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应的理论计算研究[J]. 化学进展, 2022, 34(10): 2283-2301.
[14] 苏原, 吉可明, 荀家瑶, 赵亮, 张侃, 刘平. 甲醛氧化催化剂及反应机理[J]. 化学进展, 2021, 33(9): 1560-1570.
[15] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
阅读次数
全文


摘要

亚铜催化的碳杂偶联反应机理*