English
新闻公告
More
化学进展 2010, Vol. 22 Issue (0203): 515-521 前一篇   后一篇

• 综述与评论 •

镁二次电池正极材料和电解液研究*

沈健;彭博;陶占良;陈军**   

  1. (南开大学新能源材料化学研究所 教育部高效储能工程研究中心 天津 300071)
  • 收稿日期:2009-03-24 修回日期:2009-05-21 出版日期:2010-03-24 发布日期:2010-03-18
  • 通讯作者: 陈军 E-mail:chenabc@nankai.edu.cn
  • 基金资助:

    国家自然科学基金项目-镁二次电池新型电极材料研究;973项目-纳米新能源材料能量转化的新规律及在高端电池中的应用

Cathode Materials and Electrolytes for Magnesium Secondary Batteries

Shen Jian; Peng Bo; Tao Zhanliang; Chen Jun**   

  1. (Institute of New Energy Material Chemistry and Engineering, Research Center of Energy Storage & Conversion, Ministry of Education, Nankai University, Tianjin 300071, China)
  • Received:2009-03-24 Revised:2009-05-21 Online:2010-03-24 Published:2010-03-18
  • Contact: Chen Jun E-mail:chenabc@nankai.edu.cn

镁二次电池作为一种很有潜力的大负荷蓄电池而逐渐受到人们的重视,但由于难以找到合适的正极嵌入材料和非水电解液,使其发展受到了阻碍。本文对镁二次电池正极材料和电解液的最新研究进展作了较为全面的阐述,其中着重介绍了性能最佳的Mo6S8型正极材料和Mg(AX3-nRn'R'n")2/THF型电解液(A = Al、B、Sn等;X = Cl、Br;R、R' =烷基或芳基;0<n<4;n'+n" = n),其组装的镁二次电池的正极材料放电容量可达100mAh·g-1。探讨了当前存在的问题及研究的方向,并对其应用前景进行了展望。

Magnesium secondary batteries have recently attracted much attention as a potential candidate for heavy load batteries. However, the development of Mg secondary batteries has been hindered because it is difficult to find the appropriate cathode materials and non-aqueous electrolyte. In this paper, the recent research advances of key technologies on Mg secondary batteries are reviewed with details of cathode materials and electrolyte, especially on Mo6S8 cathode material and Mg(AX3-nRn'R'n")2/THF electrolyte with favorable performance(A=Al, B, Sn, etc. ; X=Cl, Br; R, R'=alkyl or aryl; 0<n<4; n'+n" = n). The specific capacity is ~100mAh·g-1 for the above cathode material in the Mg secondary batteries. Furthermore, the current problems as well as the corresponding research directions are discussed, and the possible application prospects is also proposed.

Contents
1 Introduction
2 Cathode materials
2.1 Transition metal oxides
2.2 Transition metal sulfides
2.3 Other intercalation materials
3 Electrolytes
3.1 Grignard reagents and its derivatives
3.2 Other electrolyte systems
4 Conclusion and outlook

中图分类号: 

()

[ 1 ]  Aurbach D, Lu Z, Schechter A, et al. Nature, 2000, 407:724—727
[ 2 ]  袁华堂(Yuan H T) , 吴锋(Wu F) , 武绪丽(Wu X L)等. 电池(Battery Bimonthly) , 2002, 32: 14—17
[ 3 ]  冯真真( Feng Z Z) . 上海交通大学博士论文(Doctoral Dissertation of Shanghai Jiao Tong University) , 2008
[ 4 ]  张海朗( Zhang H L) , 王文继(WangW J) . 现代化工(Modern Chemical Industry) , 2002, 22: 13—16
[ 5 ]  Novák P, Imhof R, Haas O. Electrochim. Acta, 1999, 45:351—367
[ 6 ]  Aurbach D, Weissman I, Gofer Y, et al. Chem. Rec. , 2003,3: 61—73
[ 7 ]  Gregory T D, Hoffman R J, Winterton R C. J. Electrochem.Soc. , 1990, 137: 775—780
[ 8 ]  Novák P, Desilvestro J J. Electrochem. Soc. , 1993, 140:140—144
[ 9 ]  Novák P, Scheifele W, Haas O. J. Power Sources, 1995, 54:479—482
[ 10 ]  Makino K, Katayama Y, Miura T, et al. J. Power Sources,2001, 99: 66—69
[ 11 ]  Tao Z L, Xu L N, Gou X L, et al. Chem. Commun. , 2004,2080—2081
[ 12 ]  Li X L, Li Y D. J. Phys. Chem. B, 2004, 108:13893—13900
[ 13 ]  Aurbach D, Suresh G S, Levi E, et al. Adv. Mater. , 2007,19: 4260—4267
[ 14 ]  Levi E, Mitelman A, Aurbach D, et al. Chem. Mater. , 2007,19: 5131—5142
[ 15 ]  Mitelman A, Levi M D, Lancry E, et al. Chem. Commun. ,2007, 41: 4212—4214
[ 16 ]  Pereira-Ramos J P, Messina R, Perichon J J. Electroanal.Chem. , 1987, 218: 241—249
[ 17 ]  Joho F, Nováak P, HaasO, et al. Chimia, 1993, 47: 288
[ 18 ]  J iao L F, Yuan H T, Wang Y J, et al. Electrochem. Commun. ,2005, 7: 431—436
[ 19 ]  J iao L F, Yuan H T, Si Y C, et al. Electrochem. Commun. ,2006, 8: 1041—1044
[ 20 ]  Novák P, Scheifele W, Joho F, et al. J. Electrochem. Soc. ,1995, 142: 2544—2550
[ 21 ]  赵明( Zhao M) , 焦丽芳( J iao L F) , 袁华堂( Yuan H T)等.南开大学学报(自然科学版) (Acta Scientiarum Naturalium Universitatis Nankaiensis) , 2006, 39 (3) : 39—42
[ 22 ]  Sánchez L, Pereira-Ramos J. J. Mater. Chem. , 1997, 7:471—473
[ 23 ]  高秀玲( Gao X L) , 焦丽芳( J iao L F) , 袁华堂( Yuan H T)等. 电化学( Electrochemistry) , 2005, 11 (3) : 337—340
[ 24 ]  Kumagai N, Komaba S, Sakai H, et al. J. Power Sources,2001, 97 /98: 515—517
[ 25 ]  Lightfoot P, Krok F, Nowinski J L, et al. J. Mater. Chem. ,1992, 2: 139—140
[ 26 ]  Bruce P G, Krok F, Lightfoot P, et al. Solid State Ionics, 1992,53 /56: 351—355
[ 27 ]  Gocke E, Schêllhorn R, Aselmann G, et al. Inorg. Chem. ,1987, 26: 1805—1812
[ 28 ]  LeviM D, Lancri E, Levi E, et al. Solid State Ionics, 2005,176: 1695—1699
[ 29 ]  施志聪( Shi Z C) , 杨勇( Yang Y) . 化学进展( Progress in Chemistry) , 2005, 17: 604—613
[ 30 ]  Makino K, Katayama Y, Miura T, et al. J. Power Sources,2001, 97 /98: 512—514
[ 31 ]  Feng Z Z, Yang J, Nuli Y, et al. Electrochem. Commun. ,2008, 10: 1291—1294
[ 32 ]  Nuli Y N, Guo Z P, Liu H K, et al. Electrochem. Commun. ,2007, 9: 1913—1917
[ 33 ]  Nelson J M, Evans W V. J. Am. Chem. Soc. , 1917, 39: 82—83
[ 34 ]  Genders J D, Pletcher D. J. Electroanal. Chem. , 1986, 199:93—100
[ 35 ]  Mizrahi O, Amir N, Pollak E, et al. J. Electrochem. Soc. ,2008, 155: A103—A109
[ 36 ]  焦丽芳( J iao L F) , 袁华堂(Yuan H T) , 李晓冬(Li X D)等.化学通报(Chemistry) , 2005, 9: 714—717
[ 37 ]  李吉刚(Li J G) . 化工进展(Chemical Industry and Engineering Progress) , 2008, 27: 214—217
[ 38 ]  Yoshimoto N, Yakushiji S, Ishikawa M, et al. Electrochim. Acta, 2004, 50: 903—906
[ 39 ]  Oh J S, Ko J M, Kim D W. Electrochim. Acta, 2004, 50:903—906
[ 40 ]  Chusid O, Gofer Y, Gizbar H, et al. Adv. Mater. , 2003, 15:627—630
[ 41 ]  Nuli Y, Yang J, Wang P. App l. Surf. Sci. , 2006, 252:8086—8090
[ 42 ]  Wang P, NuLi Y N, Yang J, et al. Surf. Coat. Tech. , 2006,201: 3783—3787

[1] 李婧婧, 李洪基, 黄强, 陈哲. 掺杂对钠离子电池正极材料性能影响机制的研究[J]. 化学进展, 2022, 34(4): 857-869.
[2] 王许敏, 李书萍, 何仁杰, 余创, 谢佳, 程时杰. 准固相转化机制硫正极[J]. 化学进展, 2022, 34(4): 909-925.
[3] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.
[4] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[5] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.
[6] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[7] 周世昊, 吴贤文, 向延鸿, 朱岭, 刘志雄, 赵才贤. 水系锌离子电池锰基正极材料[J]. 化学进展, 2021, 33(4): 649-669.
[8] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[9] 刘建文, 姜贺阳, 孙驰航, 骆文彬, 毛景, 代克化. P2结构层状复合金属氧化物钠离子电池正极材料[J]. 化学进展, 2020, 32(6): 803-816.
[10] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[11] 汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 锂离子电池有机硅功能电解液[J]. 化学进展, 2020, 32(4): 467-480.
[12] 王官格, 张华宁, 吴彤, 刘博睿, 黄擎, 苏岳锋. 废旧锂离子电池正极材料资源化回收与再生[J]. 化学进展, 2020, 32(12): 2064-2074.
[13] 鲁志远, 刘燕妮, 廖世军. 锂离子电池富锂锰基层状正极材料的稳定性[J]. 化学进展, 2020, 32(10): 1504-1514.
[14] 刘燕晨, 黄斌, 邵奕嘉, 沈牧原, 杜丽, 廖世军. 钾离子电池及其最新研究进展[J]. 化学进展, 2019, 31(9): 1329-1340.
[15] 蒋志敏, 王莉, 沈旻, 陈慧闯, 马国强, 何向明. 锂离子电池正极界面修饰用电解液添加剂[J]. 化学进展, 2019, 31(5): 699-713.