English
新闻公告
More
化学进展 2010, Vol. 22 Issue (0203): 489-499 前一篇   后一篇

• 综述与评论 •

基于核酸适配体和纳米粒子的光学探针*

王国庆;陈兆鹏;陈令新**   

  1. (中国科学院烟台海岸带研究所 烟台 264003)
  • 收稿日期:2009-03-03 修回日期:2009-03-23 出版日期:2010-03-24 发布日期:2010-03-18
  • 通讯作者: 陈令新 E-mail:lxchen@yic.ac.cn
  • 基金资助:

    山东省科技攻关计划;烟台市科技攻关计划

Aptamer-Nanoparticle-Based Optical Probes

Wang Guoqing; Chen Zhaopeng; Chen Lingxin**   

  1. (Yantai Institute of Coastal Zone Research , Chinese Academy of Sciences, Yantai 264003, China)
  • Received:2009-03-03 Revised:2009-03-23 Online:2010-03-24 Published:2010-03-18
  • Contact: Chen Lingxin E-mail:lxchen@yic.ac.cn
  • Supported by:

    Department of Science and Technology of Shandong Province;the Department of Science and Technology of Yantai

核酸适配体(aptamer)是一类通过指数富集的配体系统进化技术(SELEX)经体外筛选得到的单链DNA或RNA。核酸适配体借自身形成的空间结构与靶标分子特异性结合,具有靶分子广、亲和力高、特异性强、易改造修饰等特点,因而在生命科学、临床诊断、药物发现和环境科学等方面得以广泛应用。近年来,核酸适配体与纳米技术结合,并利用纳米材料在光学、磁学、电学、化学及生物学方面表现出的特殊性质,实现了对靶标分子高灵敏度、高选择性、简便快速的识别与检测。本文评述了基于核酸适配体﹣纳米粒子特性的光学探针在生物大分子、金属离子和有机小分子检测等领域的应用现状与发展趋势,主要包括比色法、荧光光谱法、表面增强拉曼光谱法等。

Aptamers are short single-stranded DNA (ssDNA) or RNA by in vitro screening of systematic evolution of ligands by exponential enrichment (SELEX). Based on their special structures which are easily rebuilt and modified, aptamers are of high affinity and specificity with a wide range of targets. These advantages have motivated aptamers to find broad applications for biomedicine, clinic diagnosis, drug discovery environmental science and so on. Recently, aptamers integrated with nanotechnology have realized simple and rapid recognition of various targets with high sensitivity and selectivity owing to the novel optical, magnetic, electric, chemical and biological properties of nanomaterials. This paper reviews the latest advances and trends of aptamer-nanomaterial-based optical probes for biomolecules, metal ions and organic compounds, including colorimetry, fluoresence and surface-enhanced Raman spectroscopy (SERS).

Contents
1 Introduction
2 Aptamer and nanoparticles-based optical probes
2.1 Colorimetric assay
2.2 Fluorescence detection method
2.3 SERS sensors
3 Conclusion and perspects

中图分类号: 

()

[ 1 ]  Tuerk C, Gold L. Science, 1990, 249: 505—510
[ 2 ]  Ellington A D, Szostak JW. Nature, 1990, 346: 818—822
[ 3 ]  Tanaka Y, Oda S, Yamaguchi H, et al. J. Am. Chem. Soc. ,2007, 129: 244—245
[ 4 ]  Stojanovic M N, de Prada P, Landry D W. J. Am. Chem.Soc. , 2001, 123: 4928—4931
[ 5 ]  Kavakami J, Hirofumi I, Yukie Y, et al. Inorg. Biochem. ,2000, 82: 197—206
[ 6 ]  Medley C D, Smith J E, Tang ZW, et al. Anal. Chem. , 2008,80: 1067—1072
[ 7 ]  Jayasena S D. Clin. Chem. , 1999, 45: 1628—1650
[ 8 ]  Song S, Wang L, Li J, et al. Trend. Anal. Chem. , 2008, 27:108—117
[ 9 ]  谢海燕(Xie H Y) ,陈薛钗(Chen X C) ,邓玉林(Deng Y L) .化学进展( Progress in Chemistry) , 2007, 19 (6) : 1026—1033
[ 10 ]  吕凤婷(Lv F T) ,郑海荣( Zheng H R) ,房喻( Fang Y) . 化学进展( Progress in Chemistry) , 2007, 19 (2 /3) : 256—266
[ 11 ]  Banholzer M J, Millstone J E, Qin L, et al. Chem. Soc. Rev. ,2008, 37: 885—897
[ 12 ]  漆红兰(Qi H L) ,李延(Li Y) ,李晓霞(Li X X)等. 化学传感器(Chemical Sensors) , 2007, 27 (9) : 1—8
[ 13 ]  张艳丽( Zhang Y L) , 朱静( Zhu J) ,周敬良( Zhou J L)等. 化学传感器(Chemical Sensors) , 2008, 28 (3) : 1—6
[ 14 ]  李一林(Li Y L) ,郭磊(Guo L) ,张朝阳( Zhang C Y)等. 中国科学B辑:化学( Science in China Series B: Chemistry) , 2008,38 (1) : 1—11
[ 15 ]  Elghanian R, Storhoff J J, Mucic R C, et al. Science, 1997,277: 1078—1081
[ 16 ]  Pavlov V, Xiao Y, Shlyahovsky B, et al. J. Am. Chem. Soc. ,2004, 126: 11768—11769
[ 17 ]  Wang Y L, Li D, Ren W, et al. Chem. Commun. , 2008,2520—2522
[ 18 ]  Li Y Y, Zhang C, Li B S, et al. Clin. Chem. , 2007, 53 (6) :1061—1066
[ 19 ]  Jana N R, Ying J Y. Adv. Mater. , 2008, 20: 430—434
[ 20 ]  Huang C C, Huang Y F, Cao Z, et al. Anal. Chem. , 2005,77: 5735—5741
[ 21 ]  Li H, RothbergL J. J. Am. Chem. Soc. , 2004, 126: 10958—10961
[ 22 ]  Li H, Rothberg L. Proc. Natl. Acad. Sci. USA, 2004, 101:14036—14039
[ 23 ]  Wang L, Liu X, Hu X, et al. Chem. Commun. , 2006, 3780—3782
[ 24 ]  Wei H, Li B, Li J, et al. Chem. Commun. , 2007,3735—3737
[ 25 ]  Kofuji P, Newman E A. Neuroscience, 2004, 129: 1045—1056
[ 26 ]  Lee J S, Han M S, Mirkin C A. Angew. Chem. Int. Ed. ,2007, 46: 4093—4096
[ 27 ]  Lee J S, Mirkin C A. Anal. Chem. , 2008, 80: 6805—6808
[ 28 ]  Lee J S, Ulmann P A, Han M S, et al. Nano Lett. , 2008, 8(2) : 529—533
[ 29 ]  Li D, Wieckowska A, Willner I. Angew. Chem. Int. Ed. ,2008, 47: 3927—3931
[ 30 ]  Liu C W, Hsieh Y T, Huang C C, et al. Chem. Commun. ,2008, 2242—2244
[ 31 ]  Liu J, Lu Y. J. Am. Chem. Soc. , 2003, 125: 6642—6643
[ 32 ]  Liu J, Lu Y. J. Am. Chem. Soc. , 2005, 127: 12677—12683
[ 33 ]  Wang Z D, Lee J H, Lu Y. Adv. Mater. , 2008, 20:3263—3267
[ 34 ]  Lee J H, Wang Z, Liu J, et al. J. Am. Chem. Soc. , 2008,130: 14217—14266
[ 35 ]  Cuenoud B, Szostak J W. Nature, 1995, 375: 611—614
[ 36 ]  Li J, Zheng W, Kwon A, et al. Nucleic Acid Res. , 2000, 28:481—488
[ 37 ]  Liu J W, Lu Y. Angew. Chem. Int. Ed. , 2006, 45: 90—94
[ 38 ]  Liu J, Mazumdar D, Lu Y. Angew. Chem. Int. Ed. , 2006,45: 7955—7959
[ 39 ]  Zhao W, Chiuman W, Brook M A, et al. ChemBioChem, 2007,8: 727—731
[ 40 ]  Wang Y, Wang Y, Liu B. Nanotechnology, 2008, 19: art. no.415605
[ 41 ]  ZhaoW, ChiumanW, Lam J C F, et al. J. Am. Chem. Soc. ,2008, 130: 3610—3618
[ 42 ]  Chen S J, Huang Y F, Huang C C, et al. Biosens. Bioelectron. , 2008, 23: 1749—1753
[ 43 ]  Wang J, Wang L, Liu X, et al. Adv. Mater. , 2007, 19:3943—3946
[ 44 ]  Zhang J, Wang L, Pan D, et al. Small, 2008, 4: 1196—1200
[ 45 ]  Kim S, Chen L, Lee S, et al. Anal. Sci. , 2007, 23: 401—405
[ 46 ]  Jung J, Chen L, Lee S, et al. Anal. Bioanal. Chem. , 2007,387: 2609—2615
[ 47 ]  Chen L, Lee S, Lee M, et al. Biosens. Bioelectron. , 2008,23: 1878—1882
[ 48 ]  Huang C C, Chiu S H, Huang Y F, et al. Anal. Chem. , 2007,79: 4798—4804
[ 49 ]  Liu C W, Huang C C, Chang H T. Langmuir, 2008, 24:8346—8350
[ 50 ]  Huang C C, Chiang C K, Lin Z H, et al. Anal. Chem. , 2008,80: 1497—1504
[ 51 ]  Wang W J, Chen C L, Qian M X, et al. Anal. Biochem. ,2008, 373: 213—219
[ 52 ]  Wang H, Wang Y, J in J, et al. Anal. Chem. , 2008, 80:9021—9028
[ 53 ]  Yang R H, Tang Z W, Yan J L, et al. Anal. Chem. , 2008,80: 7408—7413
[ 54 ]  Huang S X, Chen Y. Nano Lett. , 2008, 8: 4210—4216
[ 55 ]  Huang Y F, Chang H T, Tan W H. Anal. Chem. , 2008, 80:567—572
[ 56 ]  Huang Y F, Sefah K, Bamrungsap S, et al. Langmuir, 2008,24: 11860—11865
[ 57 ]  Bruchez M J r, MoronneM, Gin P, et al. Science, 1998, 281:2013—2016
[ 58 ]  ChanW C, Nie S. Science, 1998, 281: 2016—2018
[ 59 ]  LevyM, Cater S F, Ellington A D. ChemBioChem, 2005, 6:2163—2166
[ 60 ]  Choi J H, Chen K H, Strano M S. J. Am. Chem. Soc. , 2006,128: 15584—15585
[ 61 ]  Chen X C, Deng Y L, Pang D W, et al. Nanotechnology, 2008,19: art no. 235105
[ 62 ]  Chu T C, Shieh F, Lavery L A, et al. Biosens. Bioelectron. ,2006, 21: 1859—1866
[ 63 ]  Bagalkot V, Zhang L F, Levy - Nissenbaum E, et al. Nano Lett. , 2007, 7: 3065—3070
[ 64 ]  Chen L, Choo J. Electrophoresis, 2008, 29: 1815—1828
[ 65 ]  Qian X M, Nie S M. Chem. Soc. Rev. , 2008, 37: 912—920
[ 66 ]  Wu D Y, Li J F, Ren B, et al. Chem. Soc. Rev. , 2008, 37:1025—1041
[ 67 ]  Nie S, Emory S R. Science, 1997, 275: 1102—1106
[ 68 ]  Lee S, Choi J, Chen L, et al. Anal. Chim. Acta, 2007, 590:139—144
[ 69 ]  Bell S E J, Sirimuthu N M S. Chem. Soc. Rev. , 2008, 37:1012—1024
[ 70 ]  Wang Y, Wei H, LiB, et al. Chem. Commun. , 2007, 5220—5222
[ 71 ]  Fabris L, Dante M, Nguyen T Q, et al. Adv. Funct. Mater. ,2008, 18: 2518—2525
[ 72 ]  Cho H, Baker B R, Wachsmann-Hogiu S , et al. Nano Lett. ,2008, 8: 4386—4390
[ 73 ]  Chen J, J iang J, Gao X, et al. Chem. Eur. J. , 2008, 14:8374—8382
[ 74 ]  Chen J W, Liu X P, Feng K J, et al. Biosens. Bioelectron. ,2008, 24: 66—71
[ 75 ]  Hu J, Zheng P C, J iang J H, et al. Anal. Chem. , 2009, 81:87—93
[ 76 ]  王国庆(Wang G Q) ,陈令新(Chen L X) . 第十七届全国色谱学术报告会及仪器展览会(17 th National Symposia and Exhibition on Chromatography ) . 2009. 4. 19221 ( April 19—21,2009, Changsha, China)
[ 77 ]  Nath S, Ghosh S K, Kundu S, et al. J. Nanopart. Res. , 2006,8: 111—116

[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[4] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[5] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[6] 卢继洋, 汪田田, 李湘湘, 邬福明, 杨辉, 胡文平. 电喷印刷柔性传感器[J]. 化学进展, 2022, 34(9): 1982-1995.
[7] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[8] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[9] 林瑜, 谭学才, 吴叶宇, 韦富存, 吴佳雯, 欧盼盼. 二维纳米材料g-C3N4在电化学发光中的应用研究[J]. 化学进展, 2022, 34(4): 898-908.
[10] 孙义民, 李厚燊, 陈振宇, 王东, 王展鹏, 肖菲. MXene在电化学传感器中的应用[J]. 化学进展, 2022, 34(2): 259-271.
[11] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[12] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[13] 赵静, 王子娅, 莫黎昕, 孟祥有, 李路海, 彭争春. 微结构化柔性压力传感器的性能增强机制、实现方法与应用优势[J]. 化学进展, 2022, 34(10): 2202-2221.
[14] 侯慧鹏, 梁阿新, 汤波, 刘宗坤, 罗爱芹. 光子晶体生化传感器的构建及应用[J]. 化学进展, 2021, 33(7): 1126-1137.
[15] 廖金花, 高佳俊, 王宇超, 孙巍. 微结构化弹性体介电层的制备方法与应用[J]. 化学进展, 2021, 33(6): 975-987.