English
新闻公告
More
化学进展 2010, Vol. 22 Issue (0203): 449-457 前一篇   后一篇

• 综述与评论 •

纤维素接枝共聚物的合成与功能*

闫强;袁金颖**;康燕;尹应武   

  1. (有机光电子与分子工程教育部重点实验室 清华大学化学系 北京100084)
  • 收稿日期:2009-04-01 修回日期:2009-06-16 出版日期:2010-03-24 发布日期:2010-03-18
  • 通讯作者: 袁金颖 E-mail:yuanjy@mail.tsinghua.edu.cn
  • 基金资助:

    智能磷酸转移酶的分子酶工程技术及其应用基础研究;电纺丝制备的嵌段共聚物模板对合成一维纳米功能材料的调控作用研究

Synthesis and Functions of Cellulose Graft Copolymers

Yan Qiang; Yuan Jinying**; Kang Yan; Yin Yingwu   

  1. (Key Lab of Organic Optoelectronic and Molecular Engineer of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China)
  • Received:2009-04-01 Revised:2009-06-16 Online:2010-03-24 Published:2010-03-18
  • Contact: Yuan Jinying E-mail:yuanjy@mail.tsinghua.edu.cn

纤维素作为自然界最广泛、最重要、最廉价易得的天然产物之一,是未来可能替代石油的最有价值的生物资源,各种利用纤维素为原料的化学研究逐渐成为生物大分子等研究领域的热点。其中,针对纤维素接枝共聚物的研究受到越来越广泛的重视。本文主要从纤维素和纤维素衍生物的接枝共聚物合成出发,旨在介绍近年来这类特殊的接枝共聚物在功能及应用上的重要发展,并对其前景进行了合理的展望与预测。

Cellulose, a kind of excellent natural products of extensiveness, importance, and cheapness, might be the most valuable biological resources as the substitute for petroleum. The study on chemistry of cellulose materials has developed so rapidly and has become a hot topic in recent years. Among them, the investigation of graft copolymer of cellulose has drawn great attention. In this paper, the functions and applications of these unique graft copolymers on the basis of the syntheses are introduced. Furthermore, this review also combines the latest scientific researches to rationally expect and forecast this potential field.

Contents
1 Introduction
2 Synthesis of cellulose graft copolymers
2.1 In situ synthesis of cellulose graft copolymers
2.2 Graft polymerization of cellulose derivatives
3 Prospects

中图分类号: 

()

[ 1 ]  Nishiyama Y, Langan P, Chanzy H. J. Am. Chem. Soc. ,2002, 124: 9074—9082
[ 2 ]  Nishiyama Y, Langan P, Chanzy H, et al. J. Am. Chem.Soc. , 2003, 125: 14300—14306
[ 3 ]  Wu J, Zhang J, Zhang H, et al. Biomacromolecules, 2004, 5:266—268
[ 4 ]  Svensson A, Nicklasson E, Harrah T, et al. Biomaterials,2005, 26: 419—431
[ 5 ]  Nishino T, Matsuda I, Hirao K. Macromolecules, 2004, 37:7683—7687
[ 6 ]  Sui X F, Yuan J Y, YuanW Z, et al. ChemistryLetters, 2008,37: 114—115
[ 7 ]  Nishio Y. Adv. Polym. Sci. , 2006, 205: 97—151
[ 8 ]  Liu J L, Wang J Q, Bachas L G, et al. Biotechnol. Prog. ,2001, 17: 866—871
[ 9 ]  Sturcova A, His I, Apperley D C, et al. Biomacromolecules,2004, 5: 1333—1339
[ 10 ]  Cranston E D, Gray D G. Biomacromolecules, 2006, 7:2522—2530
[ 11 ]  Taylor N G, Howells R M, Huttly A K, et al. Proc. Natl.Acad. Sci. USA, 2003, 100: 1450—1455
[ 12 ]  Scheible W R, Eshed R, Richmond T, et al. Proc. Natl.Acad. Sci. USA, 2001, 98: 10079—10084
[ 13 ]  Turner M B, Spear S K, Holbrey J D, et al. Biomacromolecules, 2004, 5: 1379—1384
[ 14 ]  Kurek I, Kawagoe Y, Jacob-Wilk D, et al. Proc. Natl. Acad.Sci. USA, 2002, 99: 11109—11114
[ 15 ]  Herring A M, McKinnon J T, McCloskey B D, et al. J. Am.Chem. Soc. , 2003, 125: 9916—9917
[ 16 ]  Bledzki A K, Gassan J. Prog. Polym. Sci. , 1999, 24:221—274
[ 17 ]  Klemm D, Heublein B, Fink H P, et al. Angew. Chem. Int.Ed. , 2005, 44: 3358—3393
[ 18 ]  FavierV, Chanzy H, Cavaille J Y. Macromolecules, 1995, 28:6365—6367
[ 19 ]  Heinze T, Liebert T. Prog. Polym. Sci. , 2001, 26:1689—1762
[ 20 ]  Bayer E A, Chanzy H, Lamed R, et al. Curr. Op in. Struct.Biol. , 1998, 8: 548—557
[ 21 ]  Teeri T T. Trend Biotech. , 1997, 15: 160—167
[ 22 ]  Sasaki M, Kabyemela B, Malaluan R, et al. J. Super. Fluid,1998, 13: 261—268
[ 23 ]  Carrard G, Koivula A, Soderlund H, et al. Proc. Natl. Acad.Sci. USA, 2000, 97: 10342—10347
[ 24 ]  Onda A, Ochi T, Yanagisawa K. Green Chem. , 2008, 10:1033—1037
[ 25 ]  LiuW Y, Liu R G, Li Y X, et al. Polymer, 2009, 50:211—217
[ 26 ]  Boufi S, Vilar M R, Parra V, et al. Langmuir, 2008, 24:7309—7315
[ 27 ]  Barsbay M, Guven G, Stenzel M H, et al. Macromolecules,2007, 40: 7140—7147
[ 28 ]  Saito T, Kimura S, Nishiyama Y, et al. Biomacromolecules,2007, 8: 2485—2491
[ 29 ]  Ostmark E, Harrisson S, Wooley K L, et al. Biomacromolecules, 2007, 8: 1138—1148
[ 30 ]  Vlcek P, Janata M, Làtalovà P, et al. Polymer, 2006, 47:2587—2595
[ 31 ]  Carlmark A, Malmstrêm E. J. Am. Chem. Soc. , 2002, 124:900—901
[ 32 ]  Wang J S, Matyjaszewski K. J. Am. Chem. Soc. , 1995, 117:5614—5615
[ 33 ]  Kato M, Kamigaito M, Sawamoto M, et al. Macromolecules,1995, 28: 1721—1723
[ 34 ]  Hashimoto K. Prog. Polym. Sci. , 2000, 25: 1411—1462
[ 35 ]  Braunecker W A, Matyjaszewski K. Prog. Polym. Sci. , 2007,32: 93—146
[ 36 ]  Roy D, Guthrie J T, Perrier S. Macromolecules, 2005, 38:10363—10372
[ 37 ]  McCormick C L, Lowe A B. Acc. Chem. Res. , 2004, 37:312—325
[ 38 ]  Hodgson J L, Green K A, Coote M L. Org. Lett. , 2005, 7:4581—4584
[ 39 ]  Vo C D, Rosselgong J, Armes S P, et al. Macromolecules,2007, 40: 7119—7125
[ 40 ]  Xu J T, He J P, Fan D Q, et al. Macromolecules, 2006, 39:3753—3759
[ 41 ]  Roy D, Guthrie J T, Perrier S. Soft Matter, 2008, 4: 145—155
[ 42 ]  Roy D, Knapp J S, Guthrie J T, et al. Biomacromolecules,2008, 9: 91—99
[ 43 ]  Lênnberg H, Zhou Q, Brumer H, et al. Biomacromolecules,2006, 7: 2178—2185
[ 44 ]  Chen C W, Cheng C C, Dai S A. Macromolecules, 2007, 40:8139—8141
[ 45 ]  You Y Z, Hong C Y, Wang W P, et al. Macromolecules, 2004,37: 9761—9767
[ 46 ]  Lee H I, Jakubowski W, Matyjaszewski K, et al. Macromolecules, 2006, 39: 4983—4989
[ 47 ]  Lindqvist J, Nystrêm D, ; stmark E, et al. Biomacromolecules,2008, 9: 2139—2145
[ 48 ]  Montaìez M I, Perez-Inestrosa E, Suau R, et al. Biomacromolecules, 2008, 9: 1461—1466
[ 49 ]  Nayak J N, Chen Y, Kim J. Ind. Eng. Chem. Res. , 2008,47: 1702—1706
[ 50 ]  Song Y B, Sun Y X, Zhang X Z, et al. Biomacromolecules,2008, 9: 2259—2264
[ 51 ]  Zhang H, Wu J, Zhang J, et al. Macromolecules, 2005, 38:8272—8277
[ 52 ]  Schlufter K, Schmauder H P, Dorn S, et al. Macromol. Rap id Commun. , 2006, 27: 1670—1676
[ 53 ]  Ifuku S, Kadla J F. Biomacromolecules, 2008, 9: 3308—3313
[ 54 ]  Pohl M, Schaller J, Meister F, et al. Macromol. Rap id Commun. , 2008, 29: 142—148
[ 55 ]  Sui X F, Yuan J Y, Zhou M, et al. Biomacromolecules, 2008, 9: 2615—2620
[ 56 ]  Meng T, Gao X, Zhang J, et al. Polymer, 2009, 50: 447—454
[ 57 ]  Shen D W, Yu H, Huang Y. J. Polym. Sci. Part A: Polym.Chem. , 2005, 43: 4099—4108
[ 58 ]  Kang H L, Liu W Y, Liu R G, et al. Macromol. Chem. Phys. ,2008, 209: 424—430
[ 59 ]  Li Y X, Liu R G, Liu W Y, et al. J. Polym. Sci. Part A:Polym. Chem. , 2008, 46: 6907—6915
[ 60 ]  Liu Y X, Liu R G, Huang Y. J. App l. Polym. Sci. , 2008,110: 1797—1803
[ 61 ]  Kang H, Liu W, He B, et al. Polymer, 2006, 47: 7927—7934
[ 62 ]  Yuan W Z, Yuan J Y, Zhang F B, et al. Biomacromolecules,2007, 8: 1101—1108
[ 63 ]  Wan S, J iang M, Zhang G Z. Macromolecules, 2007, 40:5552—5558
[ 64 ]  Vlcek P, Janata M, Látalová P, et al. J. Polym. Sci. Part A:Polym. Chem. , 2008, 46: 564—573
[ 65 ]  Östmark E, Nystrêm D, Malmstrêm E. Macromolecules, 2008,41: 4405—4415
[ 66 ]  Khan F Z, Shiotsuki M, Nishio Y, et al. Macromolecules,2007, 40: 9293—9303
[ 67 ]  Yan C H, Zhang J M, Lv Y X, et al. Biomacromolecules,2009, 10: 2013—2018
[ 68 ]  Yan Q, Yuan J Y, Zhang F B, et al. Biomacromolecules, 2009,10: 2033—2042

[1] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[2] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[3] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[4] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[5] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[6] 顾顺心, 姜琴, 施鹏飞. 发光铱(Ⅲ)配合物抗肿瘤活性研究及应用[J]. 化学进展, 2022, 34(9): 1957-1971.
[7] 李豹, 吴立新. 液态凝聚态调控的分散质组装及功能[J]. 化学进展, 2022, 34(7): 1600-1609.
[8] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[9] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[10] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[11] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[12] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[13] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[14] 吴巧妹, 杨启悦, 曾宪海, 邓佳慧, 张良清, 邱佳容. 纤维素基生物质催化转化制备二醇[J]. 化学进展, 2022, 34(10): 2173-2189.
[15] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
阅读次数
全文


摘要

纤维素接枝共聚物的合成与功能*