English
新闻公告
More
化学进展 2010, Vol. 22 Issue (0203): 417-426 前一篇   后一篇

• 综述与评论 •

点击化学及其在生物医学领域的应用*

赵正达;袁伟忠**;顾书英;任天斌;任杰   

  1. (同济大学材料科学与工程学院 纳米与生物高分子材料研究所 上海 200092)
  • 收稿日期:2009-04-09 修回日期:2009-05-08 出版日期:2010-03-24 发布日期:2010-03-18
  • 通讯作者: 袁伟忠 E-mail:yuanwz@tongji.edu.cn
  • 基金资助:

    以点击化学构建壳聚糖为主链的聚合物生物缀合物

"Click Chemistry" and Its Growing Applications in Biomedical Field

Zhao Zhengda; Yuan Weizhong**; Gu Shuying; Ren Tianbin; Ren Jie   

  1. ( Institute of Nano and Bio-polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 200092, China)
  • Received:2009-04-09 Revised:2009-05-08 Online:2010-03-24 Published:2010-03-18
  • Contact: Yuan Weizhong E-mail:yuanwz@tongji.edu.cn

自点击化学的概念被Sharpless提出至今,这种模块化、高效和多样性的化学反应在合成化学中得到了广泛应用。Cu(I)催化的环加成点击反应被认为是点击化学的精髓,该反应具有区域选择性和化学选择性,并且能够在室温或生理温度下水介质中进行,因此点击化学近来成为生物和医学领域中最广泛使用的连接工具。本文简要介绍了点击化学的基本概念、反应机理及其优点,重点综述了其在药物开发、聚合物生物缀合物、水凝胶和微凝胶、纳米粒子、微阵列和自组装单分子等生物医学领域的应用,最后总结了目前点击化学存在的主要问题。

The "click" concept, introduced by Sharpless and coworkers in 2001, is undeniably one of the most important trends in contemporary chemistry. The copper(I)-catalyzed click cycloaddition is generally regarded as the quintessential example of click chemistry, because it can proceeds well in aqueous medium and therefore may be efficiently performed under physiological conditions. Moreover, it holds great chemoselectivity and can therefore be used for modifying highly functional biomolecules such as poly-peptides, nucleic acids or polysaccharides. This mini-review will focus on the recent developments appearing within the literature concerning the application of the click chemistry in drug design, bioconjugation, biomaterials, colloids and planar surfaces.

Contents
1 Summary of "click" chemistry
1.1 The mechanism of "click" chemistry
1.2 The characters of "click" chemistry
2 The applications of "click" chemistry in biomedical field
2.1 Drug design
2.2 Polymer bioconjugates
2.3 Bio-sensors and micro-arrays
2.4 Hydrogels and microgels
2.5 Colloids: nanoparticle and nanocarrier
3 The prospects of "click" chemistry

中图分类号: 

()

[ 1 ]  Kolb H C, Finn M G, Sharp less KB. Angew. Chem. Int. Ed. , 2001, 40: 2004—2021
[ 2 ]  Lutz J F. Angew. Chem. Int. Ed. , 2007, 46: 1018—1025
[ 3 ]  Torn«e C W, Christensen C, Meldal M. J. Org. Chem. , 2002, 67: 3057—3064
[ 4 ]  Gao H F, Matyjaszewski F. Macromolecules, 2006, 39: 4960—4965
[ 5 ]  Ladmiral V, Mantovani G, Haddleton D M, et al. J. Am. Chem. Soc. , 2006, 128: 4823—4830
[ 6 ]  Ornelas C, Aranzaes J R, Astruc D, et al. Angew. Chem. Int. Ed. , 2006, 45: 1—6
[ 7 ]  Lutz J F, BÊrner H G, Weichenhan K. Macromolecules, 2006, 39 (19) : 6376—6383
[ 8 ]  Gao H F, Matyjaszewski F. J. Am Chem. Soc. , 2007, 129: 6633—6639
[ 9 ]  Li C M, FinnM G. J. Polym. Sci. Part A: Polym. Chem. , 2006, 44: 5513—5518
[ 10 ]  Lee B S, Lee W J, Kim Y H, et al. Biomacromolecules, 2007, 8: 744—749
[ 11 ]  Opsteen J A, Brinkhuis R P, van Hest J C M, et al. Chem. Commun. , 2007, 30: 3136—3138
[ 12 ]  Dondoni A, Giovannini P P, Massi A. Org. Lett. , 2004, 6: 2929—2932
[ 13 ]  Zeng Q, Li T, Cash B, et al. Chem. Commun. , 2007, 14: 1453—1455
[ 14 ]  Connor R E, Tirrell D A. Polym. Rev. , 2007, 47: 9—28
[ 15 ]  Beatty K E, Liu J C, Xie F, et al. Angew. Chem. Int. Ed. , 2006, 45: 7364—7467
[ 16 ]  Lin H, Walsh C T. J. Am. Chem. Soc. , 2004, 126: 13998—14003
[ 17 ]  Doerner S, Westermann B. Chem. Commun. , 2005, 22: 2852—2854
[ 18 ]  Fernandez-Megia E, Correa J, Riguera R, et al. Biomacromolecules, 2006, 7: 3104—3111
[ 19 ]  Tornoe C W, Christensen C, Meldal M. J. Org. Chem. , 2002, 67: 3057—3064
[ 20 ]  Rostovtsev V V, Green L G, Sharp less K B, et al. Angew. Chem. Int . Ed. , 2002, 41: 2596—2599
[ 21 ]  Lewis W G, FinnM G, Sharpless K B, et al. Angew. Chem. Int. Ed. , 2002, 41: 1053—1057
[ 22 ]  Huisgen R. Angew. Chem. Int. Ed. , 1963, 2: 633—645
[ 23 ]  Noodleman L S, Sharp less K B, Fokin V V, et al. J. Am. Chem. Soc. , 2005, 127: 210—216
[ 24 ]  Breinbauer R, KohnM. ChemBioChem. , 2003, 4: 1147—1149
[ 25 ]  Aggarwal V K, de Vicente J, Bonnert R V, et al. J. Org. Chem. , 2003, 68: 5381—5383
[ 26 ]  Kolb H C. Abstr. Pap. Am. Chem. Soc. , 2001, 221: U174—U174
[ 27 ]  Li J, Zheng M, J iang H, et al. Bioorg. Med. Chem. Lett. , 2006, 16: 5009—5013
[ 28 ]  Whiting M, Fokin V V, Sharp less K B, et al. Angew. Chem. Int. Ed. , 2006, 45: 1435—1439
[ 29 ]  Lee L V, Sharp less K B, Wong C H, et al. J. Am. Chem. Soc. , 2003, 125: 9588—9589
[ 30 ]  Bertozzi C R, Kiessling L L. Science, 2001, 291: 2357—2364
[ 31 ]  Müller F A, Müller L, Hofmann I, et al. Biomaterials, 2006, 27: 3955—3963
[ 32 ]  Wang W, Liu X D, Xie Y D, et al. J. Mater. Chem. , 2006, 16: 3252—3267
[ 33 ]  Duncan R. Nature. Rev. Drug Disc. , 2003, 2: 347—360
[ 34 ]  Wang Q, Dordick J S, Linhardt R J. Chem. Mater. , 2002, 14: 3232—3244
[ 35 ]  Ladmiral V, Irwin J L, Haddleton D M, et al. J. Am. Chem. Soc. , 2006, 128: 4823—4830
[ 36 ]  Geng J, Mantovani G, Haddleton D M, et al. J. Am. Chem. Soc. , 2007, 129: 15156—15163
[ 37 ]  Srinivasachari S, Liu Y, Reineke T M, et al. J. Am. Chem. Soc. , 2006, 128: 8176—8184
[ 38 ]  Xu N, Lu F Z, Li Z C. Macromol. Chem. Phys. , 2007, 208: 730—738
[ 39 ]  Dirks A J, Opsteen J. Chem. Commun. , 2005, 33: 4172—4174
[ 40 ]  Rijkers D T S, Brouwer A J, Jacobs H J F, et al. Chem. Commun. , 2005, 36: 4581—4583
[ 41 ]  Lutz J F, BÊrner H G, Weichenhan K. Macromolecules, 2006, 39: 6376—6383
[ 42 ]  Deiters A, Cropp T A, Summerer D, Schultz P G, et al. Bioorg. Med. Chem. Lett. , 2004, 14: 5743 —5745
[ 43 ]  Parrish B, Breitenkamp R B, Emrick T. J. Am. Chem. Soc. , 2005, 127: 7404—7410
[ 44 ]  Kuijpers B H M, Groothuys S, Rutjes F P J T, et al. Org. Lett. , 2004, 6: 3123—3126
[ 45 ]  Macmillan D, Blanc J. Org. Biomol. Chem. , 2006, 4: 2847—2850
[ 46 ]  Doerner S, Westermann B. Chem. Commun. , 2005, 22: 2852—2854
[ 47 ]  Lin H, Walsh C T. J. Am. Chem. Soc. , 2004, 126: 13998—14003
[ 48 ]  Fazio F, Bryan M C, Wong C H, et al. J. Am. Chem. Soc. , 2002, 124: 14397—14402
[ 49 ]  Bryan M C, Lee L V, Wong C H. Bioorg. Med. Chem. Lett. , 2004, 14: 3185—3188
[ 50 ]  Bryan M C, Fazio F, Lee H K, et al. J. Am. Chem. Soc. , 2004, 126: 8640—8641
[ 51 ]  Lin P C, Ueng S H, Lin C, et al. Angew. Chem. Int. Ed. , 2006, 45: 4286—4290
[ 52 ]  Devaraj N K, Miller G P, Chidsey C E D, et al. J. Am. Chem. Soc. , 2005, 127: 8600—8601
[ 53 ]  Lee B S, Lee J K, Choi I S, et al. Biomacromolecules, 2007, 8: 744—749
[ 54 ]  Chelmowski R, KÊster D, WÊll C, et al. J. Am. Chem. Soc. , 2008, 130: 14952—14953
[ 55 ]  Lee K Y, Mooney D J. Chem. Rev. , 2001, 101: 1869—1879
[ 56 ]  Hoffman A S. Adv. Drug Deliv. Rev. , 2002, 54: 3—12
[ 57 ]  OssipovD A, Hilborn J. Macromolecules, 2006, 39: 1709—1718
[ 58 ]  Crescenzi V, Cornelio L, Lamanna N, et al. Biomacromolecules, 2007, 8: 1844—1850
[ 59 ]  Punna S, Kaltgrad E, Finn M G. Bioconjug. Chem. , 2005, 16: 1536—1541
[ 60 ]  SlaterM, SnaukoM, Fréchet J M J, et al. Anal. Chem. , 2006, 78: 4969—4975
[ 61 ]  Lutz J F. Angew. Chem. Int. Ed. , 2007, 46: 1018—1025
[ 62 ]  WhiteM A, Johnson J A, Turro N J, et al. J. Am. Chem. Soc. , 2006, 128: 11356—11357
[ 63 ]  Lin C P, Ueng S H, Lin C C, et al. Org. Lett. , 2007, 9: 2131—2134
[ 64 ]  Fleming D A, Thode C J, WilliamsM E. Chem. Mater. , 2006, 18: 2327—2334
[ 65 ]  Haag R, Kratz F. Angew. Chem. Int. Ed. , 2006, 45: 1198—1216
[ 66 ]  JoralemonM J, O′Reilly R K, Wooley K L, et al. J. Am. Chem. Soc. , 2005, 127: 16892—16899
[ 67 ]  Hassane F S, Frisch B, Schuber F. Bioconjug. Chem. , 2006, 17: 849—854
[ 68 ]  Such G K, Tjip to E, Caruso F. Nano Lett. , 2007, 7: 1706—1710
[ 69 ]  Gruijters W T, Broeren M A C, Rutjes F P J T, et al. Org. Lett. , 2006, 8: 3163—3166
[ 70 ]  Agard N J, Prescher J A, Bertozzi C R. J. Am. Chem. Soc. , 2004, 126: 15046—15047
[ 71 ]  Agard N J, Baskin J M, Bertozzi C R, et al. ACS Chem. Biol. , 2006, 1: 644—648
[ 72 ]  Baskin J M, Prescher J A, Bertozzi C R, et al. Proc. Natl. Acad. Sci. U. S. A. , 2007, 43: 16793—16797
[ 73 ]  DirksA J, Debets M F, Rutjes F P J T, et al. ChemBioChem, 2007, 8: 1504—1508

[1] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[2] 廖伊铭, 吴宝琪, 唐荣志, 林峰, 谭余. 环张力促进的叠氮-炔环加成反应[J]. 化学进展, 2022, 34(10): 2134-2145.
[3] 杨冬, 高可奕, 杨百勤, 雷蕾, 王丽霞, 薛朝华. 微流控合成体系的装置分类及其用于纳米粒子的制备[J]. 化学进展, 2021, 33(3): 368-379.
[4] 章强, 黄文峻, 王延斌, 李兴建, 张宜恒. 基于铜催化叠氮-炔环加成反应的聚氨酯功能化[J]. 化学进展, 2020, 32(2/3): 147-161.
[5] 王童, 文姣, 李良春, 郑仁林, 孙德群. 脱氢氨基酸的合成及其在药物研发中的应用[J]. 化学进展, 2020, 32(1): 55-71.
[6] 刘萍, 汪璟, 郝鸿业, 薛云帆, 黄俊杰, 计剑. 光化学反应在生物材料表面修饰中的应用[J]. 化学进展, 2019, 31(10): 1425-1439.
[7] 王灯旭, 曹金风, 韩栋栋, 李文思, 冯圣玉. 有机硅合成新方法[J]. 化学进展, 2019, 31(1): 110-120.
[8] 刘一寰, 胡欣, 朱宁, 郭凯. 基于微流控技术制备微/纳米粒子材料[J]. 化学进展, 2018, 30(8): 1133-1142.
[9] 张咚咚, 刘敬民, 刘瑶瑶, 党梦, 方国臻, 王硕. 纳米粒子在药物传递中的应用[J]. 化学进展, 2018, 30(12): 1908-1919.
[10] 喻志超, 汤淳, 姚丽, 高庆, 徐祖顺, 杨婷婷. 聚合物基模板制备中空介孔材料[J]. 化学进展, 2018, 30(12): 1899-1907.
[11] 毕洪梅, 韩晓军. 磁应答型药物递送载体的设计与构建[J]. 化学进展, 2018, 30(12): 1920-1929.
[12] 李平, 董阿力德尔图, 孙梓嘉, 高歌. N-卤胺类高分子与纳米抗菌材料的制备及应用[J]. 化学进展, 2017, 29(2/3): 318-328.
[13] 陈璐扬, 赵瑾, 龙丽霞, 侯信, 原续波*. 肿瘤免疫治疗中的生物医用载体[J]. 化学进展, 2017, 29(10): 1195-1205.
[14] 展鹏, 王学顺, 刘新泳. “精准医疗”背景下的分子靶向药物研究——精准药物设计策略浅析[J]. 化学进展, 2016, 28(9): 1363-1386.
[15] 杜鑫, 赵彩霞, 黄洪伟, 温永强, 张学记. 树枝状多孔二氧化硅纳米粒子的制备及其在先进载体中的应用[J]. 化学进展, 2016, 28(8): 1131-1147.