English
新闻公告
More
化学进展 2010, Vol. 22 Issue (0203): 400-405 前一篇   后一篇

• 综述与评论 •

官能化硅烷及其配位化合物的研究

孙文艳;王灯旭;来庆玲;张洁;冯圣玉*   

  1. (山东大学化学与化工学院 济南 250100)
  • 收稿日期:2009-03-02 修回日期:2009-06-11 出版日期:2010-03-24 发布日期:2010-03-18
  • 通讯作者: 冯圣玉 E-mail:fsy@sdu.edu.cn
  • 基金资助:

    官能基硅杂炔类聚合物的设计合成、结构与性能;官能基硅-硅键聚合物的超分子组装基其光电性能研究

Functionalized Silanes and Their Metal Complexes

Sun Wenyan; Wang Dengxu; Lai Qingling; Zhang Jie; Feng Shengyu*   

  1. (School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China)
  • Received:2009-03-02 Revised:2009-06-11 Online:2010-03-24 Published:2010-03-18
  • Contact: Feng Shengyu E-mail:fsy@sdu.edu.cn

硅原子具有空的3d轨道,可以作为电子接受体,这样就赋予了有机硅化合物独特的性质。在硅原子上引入官能化基团的小分子化合物称为官能化硅烷。近年来官能化硅烷及其配位化合物引起了化学工作者的重视,在光学、电学、催化等方面得到广泛的应用。按照官能化基团的不同,官能化硅烷可以分为含烯基、炔基、芳环等基团的π型官能化硅烷和含N、O、P、S等杂原子的官能化硅烷两类。本文概括了官能化硅烷合成方法,总结了其配合物的制备途径及研究进展,并对其研究和发展方向进行了展望。

Silicon atom can be used as electron acceptor owing to the unoccupied 3d orbitals. This feature endowed organosilicon compounds with unique characters. Thus, functionalized silanes and their metal complexes have attracted much attention and have been extensively applied in many fields such as electronic, photoluminescence, catalytic and so on. Π-type and heteroatom-type functionalized silanes are introduced in this review. The former contains groups such as alkenyl, alkynyl, aromatic rings, etc., while the latter consists of nitrogen, oxygen, sulfur and phosphorus-containing functionalized silanes. The synthesis and progress of these two types functinalized silanes and their complexes are generalized in this article. The future of this research field is also prospected.

Contents
1 Π-type functionalized silanes and their complexes
2 Heteroatom-type functionalized silanes and their complexes
2.1 Nitrogen-containing functionalized silanes
2.2 Oxygen-containing functionalized silanes
2.3 Sulfur-containing functionalized silanes
2.4 Phosphorus-containing functionalized silanes
3 Conclusion and prospects

中图分类号: 

()

[ 1 ]  杨帆(Yang F) . 配位化学(Coordination Chemistry) . 上海:华东师范大学出版社( Shanghai: East China Normal University Press) . 20021 2—4
[ 2 ]  Kaliyappan T, Kannan P. Prog. Polym. Sci. , 2000, 25: 343—370
[ 3 ]  Bell M, Edwards A J, HoskinsB F, Kachab E H, Robson R. J.Am. Chem. Soc. , 1989, 111: 3603—3610
[ 4 ]  杜作栋(Du Z D) , 陈剑华(Chen J H) , 贝小来(Bei X L) ,周重光( Zhou C G) . 有机硅化学(Organo-silicon Chemistry) . 北京: 高等教育出版社(Beijing: Higher Education Press) , 1990
[ 5 ]  冯圣玉( Feng S Y) , 张洁( Zhang J) , 李美江(LiM J ) , 朱庆增( Zhu Q Z) . 有机硅高分子及其应用(Organosilicon Polymer and Applications) . 北京: 化学工业出版社(Beijing:Chemical Industry Press) . 2004
[ 6 ]  Lapper M F, Scott F P. A. Oraganomet Chem. 1995, 492,C11—C13
[ 7 ]  Hultzsch K C, Nelson J M, Lough A J, Manners I. Organometal-lics, 1995, 14: 5496—5502
[ 8 ]  Mansel S, Reif U, Prosenc M H, et al. J. Organomet. Chem. ,1996, 512: 225—236
[ 9 ]  Cuence T, Royo P. Coord. Chem. Rev. , 1999, 193 /195:447—498
[ 10 ]  Nguyen P, Elipe P G, Manners I. Chem. Rev. , 1999, 99:1515—1548
[ 11 ]  TewsD, Gaede P E. Organometallics, 2001, 20: 3869—3875
[ 12 ]  Hamon P, Justaud F, Stueger H, et al. J. Am. Chem. Soc. ,2008, 130: 17372—17383
[ 13 ]  Qu Z R, Chen Z F, Zhang J, et al. Organomatallics, 2003, 22:2814—2816
[ 14 ]  Zheng G L, Ma J F, Su Z M, et al. Angew. Chem. Int. Ed. ,2004, 43: 2409—2411
[ 15 ]  Song S Y, Ma J F, Yang J, et al. Organomatallics, 2007, 26:2125—2128
[ 16 ]  Xu G H, Ma J F, Yu H X, et al. Organomatallics, 2007, 25:5996—6006
[ 17 ]  Ghosh A K, Jana A D, Ghoshal D, et al. Cryst. Growth. Des. ,2006, 6: 701—707
[ 18 ]  Zhu H F, Fan J, Okamura T, et al. Cryst. Growth. Des. ,2005, 5: 289—294
[ 19 ]  Schmmitz M, Leininger S, Stang P J, et al. Organomatallics,1999, 18: 4817—4824
[ 20 ]  Eric E P, Daniel R. Inorg. Chem. , 2000, 39: 1561—1567
[ 21 ]  Lauakia M R, Jamshaid A F, Christopher D I, et al. Polyhedron, 2000, 19: 1815—1820
[ 22 ]  Eric E P, Arnold L R, Daniel R. Inorganic Chemistry Communications, 1999, 2: 194—196
[ 23 ]  Klendworth D D, Chester W, Hlatky G G, et al. US6093673, 2000
[ 24 ]  Hlatky G G. US 6384229, 2002
[ 25 ]  Bai D R, Wang S N. Organomatallics, 2004, 23: 5958—5966
[ 26 ]  Wu Y J, Wang S W, Zhu X C, et al. Inorg. Chem. , 2008,47: 5503—5511
[ 27 ]  Jung O S, Lee Y A, Kim Y J, et al. Cryst. Growth. Des. ,2002, 2: 497—499
[ 28 ]  Jung O S, Kim Y J, Kim K M, et al. J. Am. Chem. Soc. ,2002, 124: 7906—7907
[ 29 ]  Lee J W, Kim E A, Kim Y J, et al. Inorg. Chem. , 2005, 44:3151—3155
[ 30 ]  Jung O S, Kim Y J, Lee Y A, et al. Cryst. Growth. Des. ,2004, 4: 23—24
[ 31 ]  Jung O S, Lee Y A, Kim Y J. Chemistry Letters, 2002, 1096—1097
[ 32 ]  ChaM S, Park B, Kang H J, et al. Bull. Korean Chem. Soc. ,2007, 28: 1057—1059
[ 33 ]  Hye J C, Myunghyun P S. J. Am. Chem. Soc. , 1998, 120:10622—10628
[ 34 ]  Chui S S, Lo S M, Charmant J P, Orpen A G, Williams I D,Science, 1999, 283: 1148—1150
[ 35 ]  Eddaoudi M, Kim J, Wachter J B, Chae H K, Yaghi O M, etal. J. Am. Chem. Soc. , 2001, 123: 4368—4369
[ 36 ]  Yaghi O. M, O′Keeffe M, Ockwig N W, Chae H K, Eddaoudi M, Kim J. Nature, 2003, 423: 705—714
[ 37 ]  Phatt J R, Thames S T. J. Org. Chem. , 1975, 33:4271—4274
[ 38 ]  Cordes D B, Arrowsmith S M, Davies R P, et al. The 15th International Symposium on Organosilicon Chemistry, Jeju: Korea,2008, 135
[ 39 ]  Davies P R, LessR J, Lickiss P D, et al. Inorg. Chem. , 2008,47: 9958—9964
[ 40 ]  Pariya C, Marcos Y S, Maverick A W, et al. Organometallics,2008, 27: 4318—4324
[ 41 ]  Shimizu G K. Coord. Chem. Rev. , 2003, 245: 49—64
[ 42 ]  Cai J W. Coord. Chem. Rev. , 2004, 248: 1061—1083
[ 43 ]  Yim H W, Lam K C, Rheingold A L. Polyhedron, 2000,849—853
[ 44 ]  Yim H W, Tran L M, Dobbin E D, Rabinovich D, et al. Inorg.Chem. , 1999, 38: 2211—2215
[ 45 ]  Yim H W, Tran L M, Pullen Z Z, Rabinovich D. Inorg.Chem. , 1999, 38: 6234—6239
[ 46 ]  Maye M M, Chun S C, Zhong C J, et al. J. Am. Chem. Soc. ,2002, 124: 4958—4959
[ 47 ]  Maye M M, Luo J, Zhong C J, et al. J. Am. Chem. Soc. ,2003, 125: 9906—9907
[ 48 ]  Rim C, Zhang H M, Son D Y. Inorg. Chem. , 2008, 47,11993—12003
[ 49 ]  Okazaki M, Ohshitanai S, Iwata M, et al. Coord. Chem. Rev. ,2002, 226: 167—178
[ 50 ]  Balakrishna M S, Chandrasekaran P, George P P. Coord.Chem. Rev. , 2003, 241: 87—117
[ 51 ]  Gardner T G, Girolami G S. Angew. Chem. Int. Ed. Engl. ,1988, 27: 1693—1695

[1] 张婷婷, 洪兴枝, 高慧, 任颖, 贾建峰, 武海顺. 基于铜金属有机配合物的热活化延迟荧光材料[J]. 化学进展, 2022, 34(2): 411-433.
[2] 颜高杰, 吴琼, 谈玲华. 富氮唑类金属配合物的设计合成及应用[J]. 化学进展, 2021, 33(4): 689-712.
[3] 郭文迪, 刘晔. 过渡金属配合物催化炔烃和亲核试剂的羰化反应[J]. 化学进展, 2021, 33(4): 512-523.
[4] 谢嘉恩, 罗雨珩, 张黔玲, 张平玉. 金属配合物在双光子荧光探针中的应用研究[J]. 化学进展, 2021, 33(1): 111-123.
[5] 牟泽怀, 王银军, 谢鸿雁. 稀土金属配合物催化芳香型乙烯基极性单体立构选择性聚合[J]. 化学进展, 2020, 32(12): 1885-1894.
[6] 周中高, 元洋洋, 徐国海, 陈正旺, 李梅. 糖基氮杂环卡宾及其过渡金属配合物的合成与催化性能[J]. 化学进展, 2019, 31(2/3): 351-367.
[7] 袁世芳, 闫艺. 同核双金属烯烃聚合催化剂[J]. 化学进展, 2019, 31(12): 1737-1748.
[8] 邱康强, 朱宏翊, 计亮年, 巢晖. 金属配合物用于细胞内动态实时荧光示踪研究[J]. 化学进展, 2018, 30(10): 1524-1533.
[9] 孙悦文, 金素星, 王晓勇, 郭子建. 金属配合物在肿瘤化学免疫治疗中的应用前景[J]. 化学进展, 2018, 30(10): 1573-1583.
[10] 贾盈盈, 李洋, 周瑞莎, 宋江锋. 咪唑二羧酸及其衍生物构筑配合物的研究进展[J]. 化学进展, 2016, 28(4): 482-496.
[11] 邓云盼, 杨波, 余刚, 卓琼芳, 邓述波, 张鸿. 金属配合物催化氢解脱卤研究[J]. 化学进展, 2016, 28(4): 564-576.
[12] 陈峰, 白赢, 厉嘉云, 肖文军, 彭家建. 氮配位过渡金属配合物在硅氢加成反应中的应用研究[J]. 化学进展, 2015, 27(7): 806-817.
[13] 祝黔江, 薛赛凤, 陶朱. 基于外壁作用的瓜环基超分子配位聚合物[J]. 化学进展, 2015, 27(6): 625-632.
[14] 王家敏, 史蕾, 刘海洋. 咔咯及其金属配合物与DNA的作用和抗肿瘤活性[J]. 化学进展, 2015, 27(6): 755-762.
[15] 王雪珠, 谭忱, 李永琪, 张恒, 刘晔. 离子型膦配体及其离子型过渡金属配合物的合成和均相催化作用[J]. 化学进展, 2015, 27(1): 27-37.