English
新闻公告
More
化学进展 2010, Vol. 22 Issue (0203): 358-366 前一篇   后一篇

• 综述与评论 •

核壳结构双金属纳米粒子的研究与应用*

王锐;訾学红;刘立成;戴洪兴;何洪**   

  1. (北京工业大学环境与能源工程学院化学化工系 北京100124)
  • 收稿日期:2009-03-05 修回日期:2009-05-18 出版日期:2010-03-24 发布日期:2010-03-18
  • 通讯作者: 何洪 E-mail:hehong@bjut.edu.cn
  • 基金资助:

    高活性低贵金属含量的三效催化剂制备和催化特性;柴油车尾气催化净化过程中的重要基础化学问题研究;天然气高效、低排放催化燃烧技术基础研究

The Study and Application of Core-Shell Structure Bimetallic Nanoparticles

Wang Rui;  Zi Xuehong;  Liu Licheng;  Dai Hongxing;  He Hong**   

  1. (Department of chemistry and chemical engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China)
  • Received:2009-03-05 Revised:2009-05-18 Online:2010-03-24 Published:2010-03-18
  • Contact: He Hong E-mail:hehong@bjut.edu.cn
  • Supported by:

    The fabrication and characterization of three-way catalysts with high activity and low noble metal loading;The investigation of key issues in catalytic purification of diesel engine exhaust gases;Catalytic Combustion of Natural Gas with high efficiency and low emissions

核壳结构双金属纳米粒子因其特殊的原子排列方式和不同寻常的优异性能引起了普遍关注,在各种应用尤其是催化领域展示出巨大的潜力。本文综述了近年来有关核壳结构双金属纳米粒子合成与应用方面的研究结果。首先介绍了纳米合金的基本概念和主要结构,然后依照构造核壳结构的不同策略,分别介绍了核壳结构纳米合金的两种主要制备方法,即连续还原法和共还原法,其中又包括水相体系、多元醇体系、表面取代、Dendrimer络合、外延生长等不同合成体系。最后阐述了核壳结构纳米合金在催化领域的研究进展和应用前景,指出了未来研究亟待解决的问题和发展方向。

Bimetallic NPs with core-shell structure have aroused general concern because of their unique atom arrangement and extraordinary properties, therefore shows great application potentials, especially in the field of catalysis. We have reviewed the researches on synthesis and application of nanoalloys and bimetallic NPs with core-shell structure reported in recent years. In the first, basic concepts and structures of nanoalloys are introduced, then according to different strategies of forming core-shell structure, two main preparation methods are illustrated, namely successive reduction and co-reduction, which also includes different systems like aqueous, polyol, surface replacement, dendrimer complexing and epitaxial growth. Finally, the research progresses and prospects of core-shell nanoalloys in catalysis are contemplated. The problems to be solved and future development are also described.

Contents
1 Introduction
1.1 Core-shell structure nanomaterials
1.2 Bimetallic nanoparticles
2 Preparation methods
2.1 Successive reduction
2.2 Co-reduction
2.3 Other assisting methods
3 Application
4 Prospects

中图分类号: 

()

[ 1 ]  Joo S H, Park J Y, Tsung C K, et al. Nature Materials, 2009,8: 126—131
[ 2 ]  Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán L M. Chem. Mater. , 2006, 18: 2465—2467
[ 3 ]  Lu Y, Yin Y D, Li Z Y, et al. Nano Lett. , 2002, 2 ( 7 ) :785—788
[ 4 ]  Mine E, Yamada A, Kobayashi Y, et al. Journal of Colloid and Interface Science, 2003, 264: 385—390
[ 5 ]  Gorelikov I, Matsuura N. Nano Lett. , 2008, 8 (1) : 369—373
[ 6 ]  Davies R, Schurr G A, Meenan P, et al. Adv. Mater. , 1998,10 (15) : 1264—1270
[ 7 ]  Aliev F G, Correa-Duarte M A, Mamedov A, et al. Adv. Mater. , 1999, 11 (12) : 1006—1010
[ 8 ]  Quaroni L, Chumanov G. J. Am. Chem. Soc. , 1999, 121:10642—10643
[ 9 ]  Mandal T K, Fleming M S, Walt D R. Nano Letters, 2002, 2(1) : 3—7
[ 10 ]  Lahav M, Weiss E A, Xu Q B, et al. Nano Lett. , 2006, 6 (9) :2166—2171
[ 11 ]  Kamat P V, Flumiani M, Dawson A. Colloids and Surfaces A,2002, 202: 269—279
[ 12 ]  Ferrando R, Jellinek J, Johnston R L. Chemical Reviews, 2008,108 (3) : 845—910
[ 13 ]  Jellinek J, Krissinel E B. Chemical PhysicsLetters, 1996, 258:283—292
[ 14 ]  Krissinel E B, Jellinek J. Int. J. Quantum Chem. , 1997, 26(2) : 185—197
[ 15 ]  Wilson N T, Bailey M S, Johnston R L. Inorganica Chimica Acta, 2006, 359: 3649—3658
[ 16 ]  Lordeiro R A, Guimar?es F F, Belchior J C, et al. Int. J.Quantum Chem. , 2003, 95: 112—125
[ 17 ]  Turkevitch J, Stevenson P C, Hillier J. Discuss. Faraday Soc. ,1951, 11: 55—75
[ 18 ]  Frens G. Nat. Phys. Sci. , 1973, 241: 20—22
[ 19 ]  Nadagouda M N, Varma R S. Crystal Growth&Design, 2007, 7(12) : 2582—2587
[ 20 ]  Nutt M O, Hughes G B, Wong M S. Environ. Sci. Technol. ,2005, 39: 1346—1353
[ 21 ]  Henglein A. J. Phys. Chem. B, 2000, 104: 2201—2203
[ 22 ]  Cui Y, Ren B, Yao J L, et al. J. Phys. Chem. B, 2006, 110:4002—4006
[ 23 ]  Zhang B, Li J F, Zhong Q L, et al. Langmuir, 2005, 21:7449—7455
[ 24 ]  Yang J, Lee J Y, Chen L X, et al. J. Phys. Chem. B. , 2005,109: 5468—5472
[ 25 ]  Zhou W J, Lee J M. Electrochemistry Communications, 2007,9: 1725—1729
[ 26 ]  Huang C C, Yang Z S, Chang H T. Langmuir, 2004, 20:6089—6092
[ 27 ]  Zhou G J, Lu M K, Yang Z S. Langmuir, 2006, 22:5900—5903
[ 28 ]  Hu J W, Li J F, Ren B, et al. J. Phys. Chem. C, 2007, 111:1105—1112
[ 29 ]  Pande S, Ghosh S K, Praharaj S, et al. J. Phys. Chem. C,2007, 111: 10806—10813
[ 30 ]  Michel F. US 4539041, 1985
[ 31 ]  Garcia-Gutierrez D, Gutierrez-Wing C, Miki-Yoshida M, et al.App lied PhysicsA, 2004, 79 (3) : 481—487
[ 32 ]  Zhou S H, Varughese B, Eichhorn B, et al. Angew. Chem.Int. Ed. , 2005, 44: 4539—4543
[ 33 ]  Garcia-Gutierrez D I, Gutierrez-Wing C E, Giovanetti L, et al.J. Phys. Chem. B, 2005, 109: 3813—3821
[ 34 ]  Alayoglu S, Nilekar A U, Mavrikakis M, et al. Nature Materials, 2008, 7: 333—338
[ 35 ]  Alayoglu S, Eichhorn B. J. Am. Chem. Soc. , 2008, 130:17479—17486
[ 36 ]  Tsuji M, Hashimoto M, Nishizawa Y, et al. Chem. Eur. J. ,2005, 11: 440—452
[ 37 ]  Tsuji M, Nishio M, J iang P, et al. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2008, 317: 247—255
[ 38 ]  Ferrer D, Torres-Castro A, Gao X, et al. Nano Letters, 2007, 7(6) : 1701—1705
[ 39 ]  Cheng Z P, Li F S, Yang Y, et al. MaterialsLetters, 2008, 62:2003—2005
[ 40 ]  Yang J, Lee J Y, Too H P. J. Phys. Chem. B, 2005, 109:19208—19212
[ 41 ]  Sun Y G, Xia Y N. J. Am. Chem. Soc. , 2004, 126:3892—3901
[ 42 ]  Chen J Y, Wiley B, McLellan J, et al. Nano Lett. , 2005, 5(10) : 2058—2062
[ 43 ]  Lu X M, Tuan H Y, Chen J Y, et al. J. Am. Chem. Soc. ,2007, 129: 1733—1742
[ 44 ]  Kim M H, Lu X M, Wiley B, et al. J. Phys. Chem. C, 2008,112: 7872—7876
[ 45 ]  Chen J Y, McLellan J M, Siekkinen A, et al. J. Am. Chem.Soc. , 2006, 128: 14776—14777
[ 46 ]  Chen H M, Liu R S, Lo M Y, et al. J. Phys. Chem. C, 2008,112 (20) : 7522—7526
[ 47 ]  Sun Y G, Wiley B, Li Z Y, et al. J. Am. Chem. Soc. , 2004,126: 9399—9406
[ 48 ]  Camargo P H C, Xiong Y J, J i L, et al. J. Am. Chem. Soc. ,2007, 129: 15452—15453
[ 49 ]  Wang Y, Toshima N. J. Phys. Chem. B, 1997, 101:5301—5306
[ 50 ]  Mandal S, Selvakannan P R, Pasricha R, et al. J. Am. Chem.Soc. , 2003, 125: 8440—8441
[ 51 ]  Mandal S, Mandale A B, Sastry M. J. Mater. Chem. , 2004,14: 2868—2871
[ 52 ]  Selvakannan P R, SwamiA, Srisathiyanarayanan D, et al. Langmuir, 2004, 20: 7825—7836
[ 53 ]  Scott R W J, Wilson O M, Oh S K, et al. J. Am. Chem. Soc. ,2004, 126: 15583—15591
[ 54 ]  Lang H F, Maldonado S, Stevenson K J, et al. J. Am. Chem.Soc. , 2004, 126: 12949—12956
[ 55 ]  Knecht M R, Weir M G, Frenkel A I, et al. Chem. Mater. ,2008, 20: 1019—1028
[ 56 ]  Xiang Y J, Wu X C, Liu D F, et al. Nano Lett. , 2006, 6:2290—2294
[ 57 ]  Xue C, Millstone J E, Li S Y, et al. Angew. Chem. Int. Ed. ,2007, 46: 8436—8439
[ 58 ]  Seo D, Yoo C I, Jung J, et al. J. Am. Chem. Soc. , 2008,130: 2940—2941
[ 59 ]  Fan F R, Liu D Y, Wu Y F, et al. J. Am. Chem. Soc. , 2008,130: 6949—6951
[ 60 ]  Lim B, Wang J G, Camargo P H C, et al. Nano Lett. , 2008, 8(8) : 2535—2540
[ 61 ]  Habas S E, Lee H J, Radmilovic R, et al. Nature Materials,2007, 6: 692—697
[ 62 ]  Goia D V, Matijevic E. New J. Chem. , 1998, 22: 1203—1215
[ 63 ]  Harpeness R, Gedanken A. Langmuir, 2004, 20: 3431—3434
[ 64 ]  Mizukoshi Y, Fujimoto T, Nagata Y, et al. J. Phys. Chem. B,2000, 104: 6028—6032
[ 65 ]  Anandan S, Grieser F, Ashokkumar M. J. Phys. Chem. C,2008, 112 (39) : 15102—15105
[ 66 ]  Wu M L, Chen D H, Huang T C. Chem. Mater. , 2001, 13:599—606
[ 67 ]  Jose D, Jagirdar B R. J. Phys. Chem. C, 2008, 112: 10089—10094
[ 68 ]  Damle C, Biswas K, Sastry M. Langmuir, 2001, 17:7156—7159
[ 69 ]  Cao L Y, Tong L M, Diao P, et al. Chem. Mater. , 2004, 16:3239—3245
[ 70 ]  Toshima N, Kanemaru M, Shiraishi Y, et al. J. Phys. Chem.B, 2005, 109: 16326—16331
[ 71 ]  宋香宁( Song X N) , 纪小会( J i X H) , 李军(Li J) . 化学进展( Progress in Chemistry) , 2008, 20 (1) : 11—18
[ 72 ]  Garcia-Gutierrez D I, Gutierrez-Wing C E, Giovanetti L, et al.J. Phys. Chem. B, 2005, 109: 3813—3821

[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[3] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[4] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[5] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[6] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[7] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[8] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[9] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[10] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[11] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[12] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[13] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[14] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[15] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.